Recent advances in Hodge theory: period domains, algebraic cycles, and arithmetic
In its simplest form, Hodge theory is the study of periods – integrals of algebraic differential forms which arise in the study of complex geometry and moduli, number theory and physics. Organized around the basic concepts of variations of Hodge structure and period maps, this volume draws together...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | London Mathematical Society lecture note series
427 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | In its simplest form, Hodge theory is the study of periods – integrals of algebraic differential forms which arise in the study of complex geometry and moduli, number theory and physics. Organized around the basic concepts of variations of Hodge structure and period maps, this volume draws together new developments in deformation theory, mirror symmetry, Galois representations, iterated integrals, algebraic cycles and the Hodge conjecture. Its mixture of high-quality expository and research articles make it a useful resource for graduate students and seasoned researchers alike |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Feb 2016) |
Beschreibung: | 1 online resource (xvii, 514 pages) |
ISBN: | 9781316387887 |
DOI: | 10.1017/CBO9781316387887 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940353 | ||
003 | DE-604 | ||
005 | 20180307 | ||
006 | a |||| 10||| | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316387887 |c Online |9 978-1-316-38788-7 | ||
024 | 7 | |a 10.1017/CBO9781316387887 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316387887 | ||
035 | |a (OCoLC)967599874 | ||
035 | |a (DE-599)BVBBV043940353 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.74 |2 23 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
245 | 1 | 0 | |a Recent advances in Hodge theory |b period domains, algebraic cycles, and arithmetic |c edited by Matt Kerr, Washington University, St Louis, Gregory Pearlstein, Texas A & M University |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xvii, 514 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 427 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Feb 2016) | ||
520 | |a In its simplest form, Hodge theory is the study of periods – integrals of algebraic differential forms which arise in the study of complex geometry and moduli, number theory and physics. Organized around the basic concepts of variations of Hodge structure and period maps, this volume draws together new developments in deformation theory, mirror symmetry, Galois representations, iterated integrals, algebraic cycles and the Hodge conjecture. Its mixture of high-quality expository and research articles make it a useful resource for graduate students and seasoned researchers alike | ||
650 | 4 | |a Algebraic cycles / Congresses | |
650 | 4 | |a Differential-algebraic equations / Congresses | |
650 | 4 | |a Geometry, Algebraic / Congresses | |
650 | 4 | |a Hodge theory / Congresses | |
650 | 0 | 7 | |a Hodge-Theorie |0 (DE-588)4135967-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Hodge-Theorie |0 (DE-588)4135967-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kerr, Matt |d 1975- |0 (DE-588)1022666991 |4 edt | |
700 | 1 | |a Pearlstein, Gregory |d 1970- |0 (DE-588)1097779505 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-54629-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316387887 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349323 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781316387887 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316387887 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880787521536 |
---|---|
any_adam_object | |
author2 | Kerr, Matt 1975- Pearlstein, Gregory 1970- |
author2_role | edt edt |
author2_variant | m k mk g p gp |
author_GND | (DE-588)1022666991 (DE-588)1097779505 |
author_facet | Kerr, Matt 1975- Pearlstein, Gregory 1970- |
building | Verbundindex |
bvnumber | BV043940353 |
classification_rvk | SI 320 SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316387887 (OCoLC)967599874 (DE-599)BVBBV043940353 |
dewey-full | 514/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.74 |
dewey-search | 514/.74 |
dewey-sort | 3514 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316387887 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02872nmm a2200541zcb4500</leader><controlfield tag="001">BV043940353</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180307 </controlfield><controlfield tag="006">a |||| 10||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316387887</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-38788-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316387887</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316387887</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967599874</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940353</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent advances in Hodge theory</subfield><subfield code="b">period domains, algebraic cycles, and arithmetic</subfield><subfield code="c">edited by Matt Kerr, Washington University, St Louis, Gregory Pearlstein, Texas A & M University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 514 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">427</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Feb 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In its simplest form, Hodge theory is the study of periods – integrals of algebraic differential forms which arise in the study of complex geometry and moduli, number theory and physics. Organized around the basic concepts of variations of Hodge structure and period maps, this volume draws together new developments in deformation theory, mirror symmetry, Galois representations, iterated integrals, algebraic cycles and the Hodge conjecture. Its mixture of high-quality expository and research articles make it a useful resource for graduate students and seasoned researchers alike</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic cycles / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential-algebraic equations / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodge theory / Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerr, Matt</subfield><subfield code="d">1975-</subfield><subfield code="0">(DE-588)1022666991</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pearlstein, Gregory</subfield><subfield code="d">1970-</subfield><subfield code="0">(DE-588)1097779505</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-54629-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316387887</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349323</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316387887</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316387887</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV043940353 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316387887 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349323 |
oclc_num | 967599874 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 514 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic edited by Matt Kerr, Washington University, St Louis, Gregory Pearlstein, Texas A & M University Cambridge Cambridge University Press 2016 1 online resource (xvii, 514 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 427 Title from publisher's bibliographic system (viewed on 05 Feb 2016) In its simplest form, Hodge theory is the study of periods – integrals of algebraic differential forms which arise in the study of complex geometry and moduli, number theory and physics. Organized around the basic concepts of variations of Hodge structure and period maps, this volume draws together new developments in deformation theory, mirror symmetry, Galois representations, iterated integrals, algebraic cycles and the Hodge conjecture. Its mixture of high-quality expository and research articles make it a useful resource for graduate students and seasoned researchers alike Algebraic cycles / Congresses Differential-algebraic equations / Congresses Geometry, Algebraic / Congresses Hodge theory / Congresses Hodge-Theorie (DE-588)4135967-7 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Hodge-Theorie (DE-588)4135967-7 s 1\p DE-604 Kerr, Matt 1975- (DE-588)1022666991 edt Pearlstein, Gregory 1970- (DE-588)1097779505 edt Erscheint auch als Druckausgabe 978-1-107-54629-5 https://doi.org/10.1017/CBO9781316387887 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic Algebraic cycles / Congresses Differential-algebraic equations / Congresses Geometry, Algebraic / Congresses Hodge theory / Congresses Hodge-Theorie (DE-588)4135967-7 gnd |
subject_GND | (DE-588)4135967-7 (DE-588)1071861417 |
title | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic |
title_auth | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic |
title_exact_search | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic |
title_full | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic edited by Matt Kerr, Washington University, St Louis, Gregory Pearlstein, Texas A & M University |
title_fullStr | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic edited by Matt Kerr, Washington University, St Louis, Gregory Pearlstein, Texas A & M University |
title_full_unstemmed | Recent advances in Hodge theory period domains, algebraic cycles, and arithmetic edited by Matt Kerr, Washington University, St Louis, Gregory Pearlstein, Texas A & M University |
title_short | Recent advances in Hodge theory |
title_sort | recent advances in hodge theory period domains algebraic cycles and arithmetic |
title_sub | period domains, algebraic cycles, and arithmetic |
topic | Algebraic cycles / Congresses Differential-algebraic equations / Congresses Geometry, Algebraic / Congresses Hodge theory / Congresses Hodge-Theorie (DE-588)4135967-7 gnd |
topic_facet | Algebraic cycles / Congresses Differential-algebraic equations / Congresses Geometry, Algebraic / Congresses Hodge theory / Congresses Hodge-Theorie Konferenzschrift |
url | https://doi.org/10.1017/CBO9781316387887 |
work_keys_str_mv | AT kerrmatt recentadvancesinhodgetheoryperioddomainsalgebraiccyclesandarithmetic AT pearlsteingregory recentadvancesinhodgetheoryperioddomainsalgebraiccyclesandarithmetic |