Ridge functions:
Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivar...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | Cambridge tracts in mathematics
205 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivariate data sets, the MLP model in neural networks, Waring's problem over linear forms, and approximation theory. Ridge Functions is the first book devoted to studying them as entities in and of themselves. The author describes their central properties and provides a solid theoretical foundation for researchers working in areas such as approximation or data science. He also includes an extensive bibliography and discusses some of the unresolved questions that may set the course for future research in the field |
Beschreibung: | 1 Online-Ressource (x, 207 Seiten) |
ISBN: | 9781316408124 |
DOI: | 10.1017/CBO9781316408124 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940336 | ||
003 | DE-604 | ||
005 | 20190429 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316408124 |c Online |9 978-1-316-40812-4 | ||
024 | 7 | |a 10.1017/CBO9781316408124 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316408124 | ||
035 | |a (OCoLC)930540809 | ||
035 | |a (DE-599)BVBBV043940336 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.73 |2 23 | |
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
100 | 1 | |a Pinkus, Allan |d 1946- |e Verfasser |0 (DE-588)110369297 |4 aut | |
245 | 1 | 0 | |a Ridge functions |c Allan Pinkus |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 Online-Ressource (x, 207 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 205 | |
505 | 8 | |a Introduction -- Smoothness -- Uniqueness -- Indentifying functions and directions -- Polynomial ridge functions -- Density and representation -- Closure -- Existence and characterization of best approximations -- Approximation algorithms -- Integral representations -- Interpolation at points -- Interpolation on lines | |
520 | |a Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivariate data sets, the MLP model in neural networks, Waring's problem over linear forms, and approximation theory. Ridge Functions is the first book devoted to studying them as entities in and of themselves. The author describes their central properties and provides a solid theoretical foundation for researchers working in areas such as approximation or data science. He also includes an extensive bibliography and discusses some of the unresolved questions that may set the course for future research in the field | ||
650 | 4 | |a Function spaces | |
650 | 4 | |a Multivariate analysis | |
650 | 4 | |a Numbers, Real | |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-12439-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316408124 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349306 | ||
966 | e | |u https://doi.org/10.1017/CBO9781316408124 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316408124 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316408124 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880760258560 |
---|---|
any_adam_object | |
author | Pinkus, Allan 1946- |
author_GND | (DE-588)110369297 |
author_facet | Pinkus, Allan 1946- |
author_role | aut |
author_sort | Pinkus, Allan 1946- |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV043940336 |
classification_rvk | SK 660 |
collection | ZDB-20-CBO |
contents | Introduction -- Smoothness -- Uniqueness -- Indentifying functions and directions -- Polynomial ridge functions -- Density and representation -- Closure -- Existence and characterization of best approximations -- Approximation algorithms -- Integral representations -- Interpolation at points -- Interpolation on lines |
ctrlnum | (ZDB-20-CBO)CR9781316408124 (OCoLC)930540809 (DE-599)BVBBV043940336 |
dewey-full | 515/.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.73 |
dewey-search | 515/.73 |
dewey-sort | 3515 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316408124 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03078nmm a2200505zcb4500</leader><controlfield tag="001">BV043940336</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190429 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316408124</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-40812-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316408124</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316408124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)930540809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940336</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.73</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pinkus, Allan</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110369297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ridge functions</subfield><subfield code="c">Allan Pinkus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 207 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">205</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- Smoothness -- Uniqueness -- Indentifying functions and directions -- Polynomial ridge functions -- Density and representation -- Closure -- Existence and characterization of best approximations -- Approximation algorithms -- Integral representations -- Interpolation at points -- Interpolation on lines</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivariate data sets, the MLP model in neural networks, Waring's problem over linear forms, and approximation theory. Ridge Functions is the first book devoted to studying them as entities in and of themselves. The author describes their central properties and provides a solid theoretical foundation for researchers working in areas such as approximation or data science. He also includes an extensive bibliography and discusses some of the unresolved questions that may set the course for future research in the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Real</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-12439-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316408124</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349306</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316408124</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316408124</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316408124</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940336 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316408124 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349306 |
oclc_num | 930540809 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (x, 207 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Pinkus, Allan 1946- Verfasser (DE-588)110369297 aut Ridge functions Allan Pinkus Cambridge Cambridge University Press 2015 1 Online-Ressource (x, 207 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 205 Introduction -- Smoothness -- Uniqueness -- Indentifying functions and directions -- Polynomial ridge functions -- Density and representation -- Closure -- Existence and characterization of best approximations -- Approximation algorithms -- Integral representations -- Interpolation at points -- Interpolation on lines Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivariate data sets, the MLP model in neural networks, Waring's problem over linear forms, and approximation theory. Ridge Functions is the first book devoted to studying them as entities in and of themselves. The author describes their central properties and provides a solid theoretical foundation for researchers working in areas such as approximation or data science. He also includes an extensive bibliography and discusses some of the unresolved questions that may set the course for future research in the field Function spaces Multivariate analysis Numbers, Real Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 s Mehrere Variable (DE-588)4277015-4 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-107-12439-4 https://doi.org/10.1017/CBO9781316408124 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Pinkus, Allan 1946- Ridge functions Introduction -- Smoothness -- Uniqueness -- Indentifying functions and directions -- Polynomial ridge functions -- Density and representation -- Closure -- Existence and characterization of best approximations -- Approximation algorithms -- Integral representations -- Interpolation at points -- Interpolation on lines Function spaces Multivariate analysis Numbers, Real Mehrere Variable (DE-588)4277015-4 gnd Funktion Mathematik (DE-588)4071510-3 gnd |
subject_GND | (DE-588)4277015-4 (DE-588)4071510-3 |
title | Ridge functions |
title_auth | Ridge functions |
title_exact_search | Ridge functions |
title_full | Ridge functions Allan Pinkus |
title_fullStr | Ridge functions Allan Pinkus |
title_full_unstemmed | Ridge functions Allan Pinkus |
title_short | Ridge functions |
title_sort | ridge functions |
topic | Function spaces Multivariate analysis Numbers, Real Mehrere Variable (DE-588)4277015-4 gnd Funktion Mathematik (DE-588)4071510-3 gnd |
topic_facet | Function spaces Multivariate analysis Numbers, Real Mehrere Variable Funktion Mathematik |
url | https://doi.org/10.1017/CBO9781316408124 |
work_keys_str_mv | AT pinkusallan ridgefunctions |