Pure inductive logic:
Pure inductive logic is the study of rational probability treated as a branch of mathematical logic. This monograph, the first devoted to this approach, brings together the key results from the past seventy years plus the main contributions of the authors and their collaborators over the last decade...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | Perspectives in logic
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Pure inductive logic is the study of rational probability treated as a branch of mathematical logic. This monograph, the first devoted to this approach, brings together the key results from the past seventy years plus the main contributions of the authors and their collaborators over the last decade to present a comprehensive account of the discipline within a single unified context. The exposition is structured around the traditional bases of rationality, such as avoiding Dutch Books, respecting symmetry and ignoring irrelevant information. The authors uncover further rationality concepts, both in the unary and in the newly emerging polyadic languages, such as conformity, spectrum exchangeability, similarity and language invariance. For logicians with a mathematical grounding, this book provides a complete self-contained course on the subject, taking the reader from the basics up to the most recent developments. It is also a useful reference for a wider audience from philosophy and computer science |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 342 pages) |
ISBN: | 9781107326194 |
DOI: | 10.1017/CBO9781107326194 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940328 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781107326194 |c Online |9 978-1-107-32619-4 | ||
024 | 7 | |a 10.1017/CBO9781107326194 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107326194 | ||
035 | |a (OCoLC)967758748 | ||
035 | |a (DE-599)BVBBV043940328 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 161 |2 23 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
100 | 1 | |a Paris, J. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pure inductive logic |c Jeffrey Paris, University of Manchester, Alena Vencovská, University of Manchester |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (x, 342 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Perspectives in logic | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Part I. The Basics : 1. Introduction to pure inductive logic ; 2. Context ; 3. Probability functions ; 4. Conditional probability ; 5. The Dutch book argument ; 6. Some basic principles ; 7. Specifying probability functions -- Part II. Unary Inductive Logic : 8. Introduction to unary pure inductive logic ; 9. de Finetti's representation theorem ; 10. Regularity and universal certainty ; 11. Relevance ; 12. Asymptotic conditional probabilities ; 13. The conditionalization theorem ; 14. Atom exchangeability ; 15. Reichenbach's axiom ; 16. Carnap's continnuum of inductive methods ; 17. Irrelevance ; 18. Another continuum of inductive methods ; 19. The NP-continuum ; 20. The weak irrelevance principle ; 21. Equalities and inequalities ; 22. Principles of analogy ; 23. Unary symmetry -- Part III. Polyadic Inductive Logic : 24. Introduction to polyadic pure inductive logic ; 25. Polyadic constant exchangeability ; 26. Polyadic regularity ; 27. Spectrum exchangeability ; 28. Conformity ; 29. The probability functions | |
520 | |a Pure inductive logic is the study of rational probability treated as a branch of mathematical logic. This monograph, the first devoted to this approach, brings together the key results from the past seventy years plus the main contributions of the authors and their collaborators over the last decade to present a comprehensive account of the discipline within a single unified context. The exposition is structured around the traditional bases of rationality, such as avoiding Dutch Books, respecting symmetry and ignoring irrelevant information. The authors uncover further rationality concepts, both in the unary and in the newly emerging polyadic languages, such as conformity, spectrum exchangeability, similarity and language invariance. For logicians with a mathematical grounding, this book provides a complete self-contained course on the subject, taking the reader from the basics up to the most recent developments. It is also a useful reference for a wider audience from philosophy and computer science | ||
650 | 4 | |a Induction (Logic) | |
650 | 0 | 7 | |a Induktive Logik |0 (DE-588)4161594-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Induktive Logik |0 (DE-588)4161594-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vencovská, Alena |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-04230-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107326194 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349298 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107326194 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107326194 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880724606976 |
---|---|
any_adam_object | |
author | Paris, J. B. |
author_facet | Paris, J. B. |
author_role | aut |
author_sort | Paris, J. B. |
author_variant | j b p jb jbp |
building | Verbundindex |
bvnumber | BV043940328 |
classification_rvk | SK 130 ST 130 |
collection | ZDB-20-CBO |
contents | Part I. The Basics : 1. Introduction to pure inductive logic ; 2. Context ; 3. Probability functions ; 4. Conditional probability ; 5. The Dutch book argument ; 6. Some basic principles ; 7. Specifying probability functions -- Part II. Unary Inductive Logic : 8. Introduction to unary pure inductive logic ; 9. de Finetti's representation theorem ; 10. Regularity and universal certainty ; 11. Relevance ; 12. Asymptotic conditional probabilities ; 13. The conditionalization theorem ; 14. Atom exchangeability ; 15. Reichenbach's axiom ; 16. Carnap's continnuum of inductive methods ; 17. Irrelevance ; 18. Another continuum of inductive methods ; 19. The NP-continuum ; 20. The weak irrelevance principle ; 21. Equalities and inequalities ; 22. Principles of analogy ; 23. Unary symmetry -- Part III. Polyadic Inductive Logic : 24. Introduction to polyadic pure inductive logic ; 25. Polyadic constant exchangeability ; 26. Polyadic regularity ; 27. Spectrum exchangeability ; 28. Conformity ; 29. The probability functions |
ctrlnum | (ZDB-20-CBO)CR9781107326194 (OCoLC)967758748 (DE-599)BVBBV043940328 |
dewey-full | 161 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 161 - Induction |
dewey-raw | 161 |
dewey-search | 161 |
dewey-sort | 3161 |
dewey-tens | 160 - Philosophical logic |
discipline | Informatik Mathematik Philosophie |
doi_str_mv | 10.1017/CBO9781107326194 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03940nmm a2200493zc 4500</leader><controlfield tag="001">BV043940328</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107326194</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-32619-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107326194</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107326194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967758748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940328</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">161</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paris, J. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pure inductive logic</subfield><subfield code="c">Jeffrey Paris, University of Manchester, Alena Vencovská, University of Manchester</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 342 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Perspectives in logic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part I. The Basics : 1. Introduction to pure inductive logic ; 2. Context ; 3. Probability functions ; 4. Conditional probability ; 5. The Dutch book argument ; 6. Some basic principles ; 7. Specifying probability functions -- Part II. Unary Inductive Logic : 8. Introduction to unary pure inductive logic ; 9. de Finetti's representation theorem ; 10. Regularity and universal certainty ; 11. Relevance ; 12. Asymptotic conditional probabilities ; 13. The conditionalization theorem ; 14. Atom exchangeability ; 15. Reichenbach's axiom ; 16. Carnap's continnuum of inductive methods ; 17. Irrelevance ; 18. Another continuum of inductive methods ; 19. The NP-continuum ; 20. The weak irrelevance principle ; 21. Equalities and inequalities ; 22. Principles of analogy ; 23. Unary symmetry -- Part III. Polyadic Inductive Logic : 24. Introduction to polyadic pure inductive logic ; 25. Polyadic constant exchangeability ; 26. Polyadic regularity ; 27. Spectrum exchangeability ; 28. Conformity ; 29. The probability functions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pure inductive logic is the study of rational probability treated as a branch of mathematical logic. This monograph, the first devoted to this approach, brings together the key results from the past seventy years plus the main contributions of the authors and their collaborators over the last decade to present a comprehensive account of the discipline within a single unified context. The exposition is structured around the traditional bases of rationality, such as avoiding Dutch Books, respecting symmetry and ignoring irrelevant information. The authors uncover further rationality concepts, both in the unary and in the newly emerging polyadic languages, such as conformity, spectrum exchangeability, similarity and language invariance. For logicians with a mathematical grounding, this book provides a complete self-contained course on the subject, taking the reader from the basics up to the most recent developments. It is also a useful reference for a wider audience from philosophy and computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Induction (Logic)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Induktive Logik</subfield><subfield code="0">(DE-588)4161594-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Induktive Logik</subfield><subfield code="0">(DE-588)4161594-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vencovská, Alena</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-04230-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107326194</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349298</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107326194</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107326194</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940328 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781107326194 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349298 |
oclc_num | 967758748 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 342 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Perspectives in logic |
spelling | Paris, J. B. Verfasser aut Pure inductive logic Jeffrey Paris, University of Manchester, Alena Vencovská, University of Manchester Cambridge Cambridge University Press 2015 1 online resource (x, 342 pages) txt rdacontent c rdamedia cr rdacarrier Perspectives in logic Title from publisher's bibliographic system (viewed on 05 Oct 2015) Part I. The Basics : 1. Introduction to pure inductive logic ; 2. Context ; 3. Probability functions ; 4. Conditional probability ; 5. The Dutch book argument ; 6. Some basic principles ; 7. Specifying probability functions -- Part II. Unary Inductive Logic : 8. Introduction to unary pure inductive logic ; 9. de Finetti's representation theorem ; 10. Regularity and universal certainty ; 11. Relevance ; 12. Asymptotic conditional probabilities ; 13. The conditionalization theorem ; 14. Atom exchangeability ; 15. Reichenbach's axiom ; 16. Carnap's continnuum of inductive methods ; 17. Irrelevance ; 18. Another continuum of inductive methods ; 19. The NP-continuum ; 20. The weak irrelevance principle ; 21. Equalities and inequalities ; 22. Principles of analogy ; 23. Unary symmetry -- Part III. Polyadic Inductive Logic : 24. Introduction to polyadic pure inductive logic ; 25. Polyadic constant exchangeability ; 26. Polyadic regularity ; 27. Spectrum exchangeability ; 28. Conformity ; 29. The probability functions Pure inductive logic is the study of rational probability treated as a branch of mathematical logic. This monograph, the first devoted to this approach, brings together the key results from the past seventy years plus the main contributions of the authors and their collaborators over the last decade to present a comprehensive account of the discipline within a single unified context. The exposition is structured around the traditional bases of rationality, such as avoiding Dutch Books, respecting symmetry and ignoring irrelevant information. The authors uncover further rationality concepts, both in the unary and in the newly emerging polyadic languages, such as conformity, spectrum exchangeability, similarity and language invariance. For logicians with a mathematical grounding, this book provides a complete self-contained course on the subject, taking the reader from the basics up to the most recent developments. It is also a useful reference for a wider audience from philosophy and computer science Induction (Logic) Induktive Logik (DE-588)4161594-3 gnd rswk-swf Induktive Logik (DE-588)4161594-3 s 1\p DE-604 Vencovská, Alena Sonstige oth Erscheint auch als Druckausgabe 978-1-107-04230-8 https://doi.org/10.1017/CBO9781107326194 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Paris, J. B. Pure inductive logic Part I. The Basics : 1. Introduction to pure inductive logic ; 2. Context ; 3. Probability functions ; 4. Conditional probability ; 5. The Dutch book argument ; 6. Some basic principles ; 7. Specifying probability functions -- Part II. Unary Inductive Logic : 8. Introduction to unary pure inductive logic ; 9. de Finetti's representation theorem ; 10. Regularity and universal certainty ; 11. Relevance ; 12. Asymptotic conditional probabilities ; 13. The conditionalization theorem ; 14. Atom exchangeability ; 15. Reichenbach's axiom ; 16. Carnap's continnuum of inductive methods ; 17. Irrelevance ; 18. Another continuum of inductive methods ; 19. The NP-continuum ; 20. The weak irrelevance principle ; 21. Equalities and inequalities ; 22. Principles of analogy ; 23. Unary symmetry -- Part III. Polyadic Inductive Logic : 24. Introduction to polyadic pure inductive logic ; 25. Polyadic constant exchangeability ; 26. Polyadic regularity ; 27. Spectrum exchangeability ; 28. Conformity ; 29. The probability functions Induction (Logic) Induktive Logik (DE-588)4161594-3 gnd |
subject_GND | (DE-588)4161594-3 |
title | Pure inductive logic |
title_auth | Pure inductive logic |
title_exact_search | Pure inductive logic |
title_full | Pure inductive logic Jeffrey Paris, University of Manchester, Alena Vencovská, University of Manchester |
title_fullStr | Pure inductive logic Jeffrey Paris, University of Manchester, Alena Vencovská, University of Manchester |
title_full_unstemmed | Pure inductive logic Jeffrey Paris, University of Manchester, Alena Vencovská, University of Manchester |
title_short | Pure inductive logic |
title_sort | pure inductive logic |
topic | Induction (Logic) Induktive Logik (DE-588)4161594-3 gnd |
topic_facet | Induction (Logic) Induktive Logik |
url | https://doi.org/10.1017/CBO9781107326194 |
work_keys_str_mv | AT parisjb pureinductivelogic AT vencovskaalena pureinductivelogic |