The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations:
Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of se...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | London Mathematical Society lecture note series
419 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (vii, 167 pages) |
ISBN: | 9781316151037 |
DOI: | 10.1017/CBO9781316151037 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940314 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316151037 |c Online |9 978-1-316-15103-7 | ||
024 | 7 | |a 10.1017/CBO9781316151037 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316151037 | ||
035 | |a (OCoLC)930541041 | ||
035 | |a (DE-599)BVBBV043940314 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.3534 |2 23 | |
100 | 1 | |a Meyer, J. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations |c J.C. Meyer, University of Birmingham, D.J. Needham, University of Birmingham |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (vii, 167 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 419 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs | ||
650 | 4 | |a Cauchy problem | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Differential equations, Parabolic | |
700 | 1 | |a Needham, D. J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-47739-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316151037 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349284 | ||
966 | e | |u https://doi.org/10.1017/CBO9781316151037 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316151037 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880687906816 |
---|---|
any_adam_object | |
author | Meyer, J. C. |
author_facet | Meyer, J. C. |
author_role | aut |
author_sort | Meyer, J. C. |
author_variant | j c m jc jcm |
building | Verbundindex |
bvnumber | BV043940314 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316151037 (OCoLC)930541041 (DE-599)BVBBV043940314 |
dewey-full | 515/.3534 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.3534 |
dewey-search | 515/.3534 |
dewey-sort | 3515 43534 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316151037 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02811nmm a2200433zcb4500</leader><controlfield tag="001">BV043940314</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316151037</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-15103-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316151037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316151037</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)930541041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940314</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.3534</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meyer, J. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations</subfield><subfield code="c">J.C. Meyer, University of Birmingham, D.J. Needham, University of Birmingham</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 167 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">419</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Parabolic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Needham, D. J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-47739-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316151037</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349284</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316151037</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316151037</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940314 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316151037 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349284 |
oclc_num | 930541041 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vii, 167 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Meyer, J. C. Verfasser aut The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations J.C. Meyer, University of Birmingham, D.J. Needham, University of Birmingham Cambridge Cambridge University Press 2015 1 online resource (vii, 167 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 419 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs Cauchy problem Differential equations, Partial Differential equations, Parabolic Needham, D. J. Sonstige oth Erscheint auch als Druckausgabe 978-1-107-47739-1 https://doi.org/10.1017/CBO9781316151037 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Meyer, J. C. The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations Cauchy problem Differential equations, Partial Differential equations, Parabolic |
title | The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations |
title_auth | The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations |
title_exact_search | The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations |
title_full | The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations J.C. Meyer, University of Birmingham, D.J. Needham, University of Birmingham |
title_fullStr | The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations J.C. Meyer, University of Birmingham, D.J. Needham, University of Birmingham |
title_full_unstemmed | The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations J.C. Meyer, University of Birmingham, D.J. Needham, University of Birmingham |
title_short | The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations |
title_sort | the cauchy problem for non lipschitz semi linear parabolic partial differential equations |
topic | Cauchy problem Differential equations, Partial Differential equations, Parabolic |
topic_facet | Cauchy problem Differential equations, Partial Differential equations, Parabolic |
url | https://doi.org/10.1017/CBO9781316151037 |
work_keys_str_mv | AT meyerjc thecauchyproblemfornonlipschitzsemilinearparabolicpartialdifferentialequations AT needhamdj thecauchyproblemfornonlipschitzsemilinearparabolicpartialdifferentialequations |