Cubical homotopy theory:
Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foun...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | New mathematical monographs
25 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 631 pages) |
ISBN: | 9781139343329 |
DOI: | 10.1017/CBO9781139343329 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940310 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781139343329 |c Online |9 978-1-139-34332-9 | ||
024 | 7 | |a 10.1017/CBO9781139343329 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139343329 | ||
035 | |a (OCoLC)930541167 | ||
035 | |a (DE-599)BVBBV043940310 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.24 |2 23 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Munson, Brian A. |d 1976- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Cubical homotopy theory |c Brian A. Munson, United States Naval Academy, Maryland, Ismar Volić, Wellesley College, Massachusetts |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (xv, 631 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 25 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots | ||
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Cube | |
650 | 4 | |a Algebraic topology | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | 1 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Volić, Ismar |d 1973- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-03025-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139343329 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349280 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139343329 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139343329 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880691052544 |
---|---|
any_adam_object | |
author | Munson, Brian A. 1976- |
author_facet | Munson, Brian A. 1976- |
author_role | aut |
author_sort | Munson, Brian A. 1976- |
author_variant | b a m ba bam |
building | Verbundindex |
bvnumber | BV043940310 |
classification_rvk | SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139343329 (OCoLC)930541167 (DE-599)BVBBV043940310 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139343329 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02993nmm a2200517zcb4500</leader><controlfield tag="001">BV043940310</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139343329</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-34332-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139343329</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139343329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)930541167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940310</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Munson, Brian A.</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cubical homotopy theory</subfield><subfield code="c">Brian A. Munson, United States Naval Academy, Maryland, Ismar Volić, Wellesley College, Massachusetts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 631 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volić, Ismar</subfield><subfield code="d">1973-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-03025-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139343329</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349280</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139343329</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139343329</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940310 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781139343329 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349280 |
oclc_num | 930541167 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 631 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Munson, Brian A. 1976- Verfasser aut Cubical homotopy theory Brian A. Munson, United States Naval Academy, Maryland, Ismar Volić, Wellesley College, Massachusetts Cambridge Cambridge University Press 2015 1 online resource (xv, 631 pages) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 25 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots Homotopy theory Cube Algebraic topology Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 s Algebraische Topologie (DE-588)4120861-4 s 1\p DE-604 Volić, Ismar 1973- Sonstige oth Erscheint auch als Druckausgabe 978-1-107-03025-1 https://doi.org/10.1017/CBO9781139343329 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Munson, Brian A. 1976- Cubical homotopy theory Homotopy theory Cube Algebraic topology Algebraische Topologie (DE-588)4120861-4 gnd Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4120861-4 (DE-588)4128142-1 |
title | Cubical homotopy theory |
title_auth | Cubical homotopy theory |
title_exact_search | Cubical homotopy theory |
title_full | Cubical homotopy theory Brian A. Munson, United States Naval Academy, Maryland, Ismar Volić, Wellesley College, Massachusetts |
title_fullStr | Cubical homotopy theory Brian A. Munson, United States Naval Academy, Maryland, Ismar Volić, Wellesley College, Massachusetts |
title_full_unstemmed | Cubical homotopy theory Brian A. Munson, United States Naval Academy, Maryland, Ismar Volić, Wellesley College, Massachusetts |
title_short | Cubical homotopy theory |
title_sort | cubical homotopy theory |
topic | Homotopy theory Cube Algebraic topology Algebraische Topologie (DE-588)4120861-4 gnd Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | Homotopy theory Cube Algebraic topology Algebraische Topologie Homotopietheorie |
url | https://doi.org/10.1017/CBO9781139343329 |
work_keys_str_mv | AT munsonbriana cubicalhomotopytheory AT volicismar cubicalhomotopytheory |