Fourier analysis and Hausdorff dimension:
During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourie...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | Cambridge studies in advanced mathematics
150 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBM01 UBR01 Volltext |
Zusammenfassung: | During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics |
Beschreibung: | 1 Online-Ressource (xiv, 440 Seiten) |
ISBN: | 9781316227619 |
DOI: | 10.1017/CBO9781316227619 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940296 | ||
003 | DE-604 | ||
005 | 20231214 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316227619 |c Online |9 978-1-316-22761-9 | ||
024 | 7 | |a 10.1017/CBO9781316227619 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316227619 | ||
035 | |a (OCoLC)992901782 | ||
035 | |a (DE-599)BVBBV043940296 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 |a DE-19 | ||
082 | 0 | |a 515.2/433 |2 23 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Mattila, Pertti |d 1947- |e Verfasser |0 (DE-588)1075782376 |4 aut | |
245 | 1 | 0 | |a Fourier analysis and Hausdorff dimension |c Pertti Mattila, University of Helsinki |
246 | 1 | 3 | |a Fourier analysis & Hausdorff dimension |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 Online-Ressource (xiv, 440 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 150 | |
520 | |a During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics | ||
650 | 4 | |a Fourier transformations | |
650 | 4 | |a Measure theory | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Hausdorff-Dimension |0 (DE-588)4159234-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 1 | |a Hausdorff-Dimension |0 (DE-588)4159234-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-107-10735-9 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 150 |w (DE-604)BV044781283 |9 150 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316227619 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349266 | ||
966 | e | |u https://doi.org/10.1017/CBO9781316227619 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316227619 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316227619 |l UBM01 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316227619 |l UBR01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880664838144 |
---|---|
any_adam_object | |
author | Mattila, Pertti 1947- |
author_GND | (DE-588)1075782376 |
author_facet | Mattila, Pertti 1947- |
author_role | aut |
author_sort | Mattila, Pertti 1947- |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV043940296 |
classification_rvk | SK 450 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316227619 (OCoLC)992901782 (DE-599)BVBBV043940296 |
dewey-full | 515.2/433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2/433 |
dewey-search | 515.2/433 |
dewey-sort | 3515.2 3433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316227619 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03191nmm a2200529zcb4500</leader><controlfield tag="001">BV043940296</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316227619</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-22761-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316227619</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316227619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992901782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940296</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2/433</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mattila, Pertti</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1075782376</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fourier analysis and Hausdorff dimension</subfield><subfield code="c">Pertti Mattila, University of Helsinki</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Fourier analysis & Hausdorff dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 440 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">150</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hausdorff-Dimension</subfield><subfield code="0">(DE-588)4159234-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hausdorff-Dimension</subfield><subfield code="0">(DE-588)4159234-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-107-10735-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">150</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">150</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316227619</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349266</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316227619</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316227619</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316227619</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316227619</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940296 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316227619 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349266 |
oclc_num | 992901782 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xiv, 440 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Mattila, Pertti 1947- Verfasser (DE-588)1075782376 aut Fourier analysis and Hausdorff dimension Pertti Mattila, University of Helsinki Fourier analysis & Hausdorff dimension Cambridge Cambridge University Press 2015 1 Online-Ressource (xiv, 440 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 150 During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics Fourier transformations Measure theory Mathematical analysis Hausdorff-Dimension (DE-588)4159234-7 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s Hausdorff-Dimension (DE-588)4159234-7 s DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-1-107-10735-9 Cambridge studies in advanced mathematics 150 (DE-604)BV044781283 150 https://doi.org/10.1017/CBO9781316227619 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mattila, Pertti 1947- Fourier analysis and Hausdorff dimension Cambridge studies in advanced mathematics Fourier transformations Measure theory Mathematical analysis Hausdorff-Dimension (DE-588)4159234-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4159234-7 (DE-588)4023453-8 |
title | Fourier analysis and Hausdorff dimension |
title_alt | Fourier analysis & Hausdorff dimension |
title_auth | Fourier analysis and Hausdorff dimension |
title_exact_search | Fourier analysis and Hausdorff dimension |
title_full | Fourier analysis and Hausdorff dimension Pertti Mattila, University of Helsinki |
title_fullStr | Fourier analysis and Hausdorff dimension Pertti Mattila, University of Helsinki |
title_full_unstemmed | Fourier analysis and Hausdorff dimension Pertti Mattila, University of Helsinki |
title_short | Fourier analysis and Hausdorff dimension |
title_sort | fourier analysis and hausdorff dimension |
topic | Fourier transformations Measure theory Mathematical analysis Hausdorff-Dimension (DE-588)4159234-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | Fourier transformations Measure theory Mathematical analysis Hausdorff-Dimension Harmonische Analyse |
url | https://doi.org/10.1017/CBO9781316227619 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT mattilapertti fourieranalysisandhausdorffdimension AT mattilapertti fourieranalysishausdorffdimension |