Sobolev spaces on metric measure spaces: an approach based on upper gradients
Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of m...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | New mathematical monographs
27 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 434 pages) |
ISBN: | 9781316135914 |
DOI: | 10.1017/CBO9781316135914 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940262 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316135914 |c Online |9 978-1-316-13591-4 | ||
024 | 7 | |a 10.1017/CBO9781316135914 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316135914 | ||
035 | |a (OCoLC)992879659 | ||
035 | |a (DE-599)BVBBV043940262 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.7 |2 23 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Heinonen, Juha |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sobolev spaces on metric measure spaces |b an approach based on upper gradients |c Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (xii, 434 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 27 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions | |
520 | |a Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities | ||
650 | 4 | |a Metric spaces | |
650 | 4 | |a Sobolev spaces | |
650 | 0 | 7 | |a Metrischer Raum |0 (DE-588)4169745-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sobolev-Raum |0 (DE-588)4055345-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sobolev-Raum |0 (DE-588)4055345-0 |D s |
689 | 0 | 1 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Koskela, Pekka |e Sonstige |4 oth | |
700 | 1 | |a Shanmugalingam, Nageswari |e Sonstige |4 oth | |
700 | 1 | |a Tyson, Jeremy T. |d 1972- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-09234-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-46534-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316135914 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349232 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781316135914 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316135914 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880597729280 |
---|---|
any_adam_object | |
author | Heinonen, Juha |
author_facet | Heinonen, Juha |
author_role | aut |
author_sort | Heinonen, Juha |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV043940262 |
classification_rvk | SK 600 |
collection | ZDB-20-CBO |
contents | Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions |
ctrlnum | (ZDB-20-CBO)CR9781316135914 (OCoLC)992879659 (DE-599)BVBBV043940262 |
dewey-full | 515/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7 |
dewey-search | 515/.7 |
dewey-sort | 3515 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316135914 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03816nmm a2200553zcb4500</leader><controlfield tag="001">BV043940262</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316135914</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-13591-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316135914</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316135914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992879659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940262</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heinonen, Juha</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sobolev spaces on metric measure spaces</subfield><subfield code="b">an approach based on upper gradients</subfield><subfield code="c">Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 434 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koskela, Pekka</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shanmugalingam, Nageswari</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tyson, Jeremy T.</subfield><subfield code="d">1972-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-09234-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-46534-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316135914</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349232</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316135914</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316135914</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940262 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316135914 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349232 |
oclc_num | 992879659 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 434 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Heinonen, Juha Verfasser aut Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson Cambridge Cambridge University Press 2015 1 online resource (xii, 434 pages) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 27 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities Metric spaces Sobolev spaces Metrischer Raum (DE-588)4169745-5 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 s Metrischer Raum (DE-588)4169745-5 s 1\p DE-604 Koskela, Pekka Sonstige oth Shanmugalingam, Nageswari Sonstige oth Tyson, Jeremy T. 1972- Sonstige oth Erscheint auch als Druckausgabe 978-1-107-09234-1 Erscheint auch als Druckausgabe 978-1-107-46534-3 https://doi.org/10.1017/CBO9781316135914 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heinonen, Juha Sobolev spaces on metric measure spaces an approach based on upper gradients Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions Metric spaces Sobolev spaces Metrischer Raum (DE-588)4169745-5 gnd Sobolev-Raum (DE-588)4055345-0 gnd |
subject_GND | (DE-588)4169745-5 (DE-588)4055345-0 |
title | Sobolev spaces on metric measure spaces an approach based on upper gradients |
title_auth | Sobolev spaces on metric measure spaces an approach based on upper gradients |
title_exact_search | Sobolev spaces on metric measure spaces an approach based on upper gradients |
title_full | Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
title_fullStr | Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
title_full_unstemmed | Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
title_short | Sobolev spaces on metric measure spaces |
title_sort | sobolev spaces on metric measure spaces an approach based on upper gradients |
title_sub | an approach based on upper gradients |
topic | Metric spaces Sobolev spaces Metrischer Raum (DE-588)4169745-5 gnd Sobolev-Raum (DE-588)4055345-0 gnd |
topic_facet | Metric spaces Sobolev spaces Metrischer Raum Sobolev-Raum |
url | https://doi.org/10.1017/CBO9781316135914 |
work_keys_str_mv | AT heinonenjuha sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT koskelapekka sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT shanmugalingamnageswari sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT tysonjeremyt sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients |