Electricity and magnetism for mathematicians: a guided path from Maxwell's equations to Yang-Mills
This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descrip...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-19 Volltext |
Zusammenfassung: | This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless. The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (xiv, 282 Seiten) |
ISBN: | 9781139939683 |
DOI: | 10.1017/CBO9781139939683 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940255 | ||
003 | DE-604 | ||
005 | 20240604 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781139939683 |c Online |9 978-1-139-93968-3 | ||
024 | 7 | |a 10.1017/CBO9781139939683 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139939683 | ||
035 | |a (OCoLC)992907746 | ||
035 | |a (DE-599)BVBBV043940255 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-19 | ||
082 | 0 | |a 537.01/51 |2 23 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a Garrity, Thomas A. |d 1959- |e Verfasser |0 (DE-588)173580130 |4 aut | |
245 | 1 | 0 | |a Electricity and magnetism for mathematicians |b a guided path from Maxwell's equations to Yang-Mills |c Thomas A. Garrity, Williams College, Williamstown, Massachusetts ; with illustrations by Nicholas Neumann-Chun |
246 | 1 | 3 | |a Electricity & Magnetism for Mathematicians |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 Online-Ressource (xiv, 282 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless. The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Electromagnetic theory / Mathematics / Textbooks | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feldtheorie |0 (DE-588)4016698-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Feldtheorie |0 (DE-588)4016698-3 |D s |
689 | 0 | 1 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Neumann-Chun, Nicholas |4 ill | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-07820-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-43516-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139939683 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
966 | e | |u https://doi.org/10.1017/CBO9781139939683 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139939683 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139939683 |l DE-19 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805075686423003136 |
---|---|
adam_text | |
any_adam_object | |
author | Garrity, Thomas A. 1959- |
author2 | Neumann-Chun, Nicholas |
author2_role | ill |
author2_variant | n n c nnc |
author_GND | (DE-588)173580130 |
author_facet | Garrity, Thomas A. 1959- Neumann-Chun, Nicholas |
author_role | aut |
author_sort | Garrity, Thomas A. 1959- |
author_variant | t a g ta tag |
building | Verbundindex |
bvnumber | BV043940255 |
classification_rvk | SK 950 UO 4000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139939683 (OCoLC)992907746 (DE-599)BVBBV043940255 |
dewey-full | 537.01/51 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.01/51 |
dewey-search | 537.01/51 |
dewey-sort | 3537.01 251 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9781139939683 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV043940255</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139939683</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-93968-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139939683</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139939683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992907746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940255</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.01/51</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garrity, Thomas A.</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173580130</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electricity and magnetism for mathematicians</subfield><subfield code="b">a guided path from Maxwell's equations to Yang-Mills</subfield><subfield code="c">Thomas A. Garrity, Williams College, Williamstown, Massachusetts ; with illustrations by Nicholas Neumann-Chun</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Electricity & Magnetism for Mathematicians</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 282 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless. The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic theory / Mathematics / Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neumann-Chun, Nicholas</subfield><subfield code="4">ill</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-07820-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-43516-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139939683</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139939683</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139939683</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139939683</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940255 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T05:45:21Z |
institution | BVB |
isbn | 9781139939683 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349225 |
oclc_num | 992907746 |
open_access_boolean | |
owner | DE-12 DE-92 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xiv, 282 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBM_PDA_CBO_Kauf_2024 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Garrity, Thomas A. 1959- Verfasser (DE-588)173580130 aut Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills Thomas A. Garrity, Williams College, Williamstown, Massachusetts ; with illustrations by Nicholas Neumann-Chun Electricity & Magnetism for Mathematicians Cambridge Cambridge University Press 2015 1 Online-Ressource (xiv, 282 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless. The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature Mathematik Electromagnetic theory / Mathematics / Textbooks Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Feldtheorie (DE-588)4016698-3 gnd rswk-swf Feldtheorie (DE-588)4016698-3 s Differentialgeometrie (DE-588)4012248-7 s 1\p DE-604 Neumann-Chun, Nicholas ill Erscheint auch als Druckausgabe 978-1-107-07820-8 Erscheint auch als Druckausgabe 978-1-107-43516-2 https://doi.org/10.1017/CBO9781139939683 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Garrity, Thomas A. 1959- Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills Mathematik Electromagnetic theory / Mathematics / Textbooks Differentialgeometrie (DE-588)4012248-7 gnd Feldtheorie (DE-588)4016698-3 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4016698-3 |
title | Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills |
title_alt | Electricity & Magnetism for Mathematicians |
title_auth | Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills |
title_exact_search | Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills |
title_full | Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills Thomas A. Garrity, Williams College, Williamstown, Massachusetts ; with illustrations by Nicholas Neumann-Chun |
title_fullStr | Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills Thomas A. Garrity, Williams College, Williamstown, Massachusetts ; with illustrations by Nicholas Neumann-Chun |
title_full_unstemmed | Electricity and magnetism for mathematicians a guided path from Maxwell's equations to Yang-Mills Thomas A. Garrity, Williams College, Williamstown, Massachusetts ; with illustrations by Nicholas Neumann-Chun |
title_short | Electricity and magnetism for mathematicians |
title_sort | electricity and magnetism for mathematicians a guided path from maxwell s equations to yang mills |
title_sub | a guided path from Maxwell's equations to Yang-Mills |
topic | Mathematik Electromagnetic theory / Mathematics / Textbooks Differentialgeometrie (DE-588)4012248-7 gnd Feldtheorie (DE-588)4016698-3 gnd |
topic_facet | Mathematik Electromagnetic theory / Mathematics / Textbooks Differentialgeometrie Feldtheorie |
url | https://doi.org/10.1017/CBO9781139939683 |
work_keys_str_mv | AT garritythomasa electricityandmagnetismformathematiciansaguidedpathfrommaxwellsequationstoyangmills AT neumannchunnicholas electricityandmagnetismformathematiciansaguidedpathfrommaxwellsequationstoyangmills AT garritythomasa electricitymagnetismformathematicians AT neumannchunnicholas electricitymagnetismformathematicians |