Introduction to random graphs:
From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UPA01 URL des Erstveröffentlichers |
Zusammenfassung: | From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject |
Beschreibung: | Title from publisher's bibliographic system (viewed on 01 Feb 2016) |
Beschreibung: | 1 Online-Ressource (xvii, 464 Seiten) |
ISBN: | 9781316339831 |
DOI: | 10.1017/CBO9781316339831 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940241 | ||
003 | DE-604 | ||
005 | 20230521 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316339831 |c Online |9 978-1-316-33983-1 | ||
024 | 7 | |a 10.1017/CBO9781316339831 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316339831 | ||
035 | |a (OCoLC)967600673 | ||
035 | |a (DE-599)BVBBV043940241 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-739 | ||
082 | 0 | |a 511/.5 |2 23 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Frieze, Alan |d 1945- |e Verfasser |0 (DE-588)172081785 |4 aut | |
245 | 1 | 0 | |a Introduction to random graphs |c Alan Frieze, Carnegie-Mellon University, Pennsylvania, Michał Karoński, Adam Mickiewicz University and Emory University |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 Online-Ressource (xvii, 464 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 01 Feb 2016) | ||
505 | 8 | |a Machine generated contents note: Preface; Part I. Basic Models: 1. Random graphs; 2. Evolution; 3. Vertex degrees; 4. Connectivity; 5. Small subgraphs; 6. Spanning subgraphs; 7. Extreme characteristics; 8. Extremal properties; Part II. Basic Model Extensions: 9. Inhomogeneous graphs; 10. Fixed degree sequence; 11. Intersection graphs; 12. Digraphs; 13. Hypergraphs; Part III. Other Models: 14. Trees; 15. Mappings; 16. k-out; 17. Real-world networks; 18. Weighted graphs; 19. Brief notes on uncovered topics; Part IV. Tools and Methods: 20. Moments; 21. Inequalities; 22. Differential equations method; 23. Branching processes; 24. Entropy; References; Author index; Main index | |
520 | |a From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject | ||
650 | 4 | |a Random graphs | |
650 | 4 | |a Combinatorial probabilities | |
650 | 4 | |a Probabilities | |
650 | 0 | 7 | |a Zufallsgraph |0 (DE-588)4277661-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zufallsgraph |0 (DE-588)4277661-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Karoński, Michał |d 1946- |e Sonstige |0 (DE-588)1113879629 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-11850-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316339831 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349211 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781316339831 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316339831 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316339831 |l UPA01 |p ZDB-20-CBO |q UPA_Einzelkauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880532717568 |
---|---|
any_adam_object | |
author | Frieze, Alan 1945- |
author_GND | (DE-588)172081785 (DE-588)1113879629 |
author_facet | Frieze, Alan 1945- |
author_role | aut |
author_sort | Frieze, Alan 1945- |
author_variant | a f af |
building | Verbundindex |
bvnumber | BV043940241 |
classification_rvk | SK 820 SK 890 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: Preface; Part I. Basic Models: 1. Random graphs; 2. Evolution; 3. Vertex degrees; 4. Connectivity; 5. Small subgraphs; 6. Spanning subgraphs; 7. Extreme characteristics; 8. Extremal properties; Part II. Basic Model Extensions: 9. Inhomogeneous graphs; 10. Fixed degree sequence; 11. Intersection graphs; 12. Digraphs; 13. Hypergraphs; Part III. Other Models: 14. Trees; 15. Mappings; 16. k-out; 17. Real-world networks; 18. Weighted graphs; 19. Brief notes on uncovered topics; Part IV. Tools and Methods: 20. Moments; 21. Inequalities; 22. Differential equations method; 23. Branching processes; 24. Entropy; References; Author index; Main index |
ctrlnum | (ZDB-20-CBO)CR9781316339831 (OCoLC)967600673 (DE-599)BVBBV043940241 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316339831 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03736nmm a2200517zc 4500</leader><controlfield tag="001">BV043940241</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230521 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316339831</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-33983-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316339831</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316339831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967600673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940241</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Frieze, Alan</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172081785</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to random graphs</subfield><subfield code="c">Alan Frieze, Carnegie-Mellon University, Pennsylvania, Michał Karoński, Adam Mickiewicz University and Emory University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 464 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 01 Feb 2016)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: Preface; Part I. Basic Models: 1. Random graphs; 2. Evolution; 3. Vertex degrees; 4. Connectivity; 5. Small subgraphs; 6. Spanning subgraphs; 7. Extreme characteristics; 8. Extremal properties; Part II. Basic Model Extensions: 9. Inhomogeneous graphs; 10. Fixed degree sequence; 11. Intersection graphs; 12. Digraphs; 13. Hypergraphs; Part III. Other Models: 14. Trees; 15. Mappings; 16. k-out; 17. Real-world networks; 18. Weighted graphs; 19. Brief notes on uncovered topics; Part IV. Tools and Methods: 20. Moments; 21. Inequalities; 22. Differential equations method; 23. Branching processes; 24. Entropy; References; Author index; Main index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random graphs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsgraph</subfield><subfield code="0">(DE-588)4277661-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zufallsgraph</subfield><subfield code="0">(DE-588)4277661-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karoński, Michał</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1113879629</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-11850-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316339831</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349211</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316339831</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316339831</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316339831</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_Einzelkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940241 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316339831 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349211 |
oclc_num | 967600673 |
open_access_boolean | |
owner | DE-12 DE-92 DE-739 |
owner_facet | DE-12 DE-92 DE-739 |
physical | 1 Online-Ressource (xvii, 464 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UPA_Einzelkauf_2023 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Frieze, Alan 1945- Verfasser (DE-588)172081785 aut Introduction to random graphs Alan Frieze, Carnegie-Mellon University, Pennsylvania, Michał Karoński, Adam Mickiewicz University and Emory University Cambridge Cambridge University Press 2015 1 Online-Ressource (xvii, 464 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 01 Feb 2016) Machine generated contents note: Preface; Part I. Basic Models: 1. Random graphs; 2. Evolution; 3. Vertex degrees; 4. Connectivity; 5. Small subgraphs; 6. Spanning subgraphs; 7. Extreme characteristics; 8. Extremal properties; Part II. Basic Model Extensions: 9. Inhomogeneous graphs; 10. Fixed degree sequence; 11. Intersection graphs; 12. Digraphs; 13. Hypergraphs; Part III. Other Models: 14. Trees; 15. Mappings; 16. k-out; 17. Real-world networks; 18. Weighted graphs; 19. Brief notes on uncovered topics; Part IV. Tools and Methods: 20. Moments; 21. Inequalities; 22. Differential equations method; 23. Branching processes; 24. Entropy; References; Author index; Main index From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject Random graphs Combinatorial probabilities Probabilities Zufallsgraph (DE-588)4277661-2 gnd rswk-swf Zufallsgraph (DE-588)4277661-2 s 1\p DE-604 Karoński, Michał 1946- Sonstige (DE-588)1113879629 oth Erscheint auch als Druck-Ausgabe 978-1-107-11850-8 https://doi.org/10.1017/CBO9781316339831 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Frieze, Alan 1945- Introduction to random graphs Machine generated contents note: Preface; Part I. Basic Models: 1. Random graphs; 2. Evolution; 3. Vertex degrees; 4. Connectivity; 5. Small subgraphs; 6. Spanning subgraphs; 7. Extreme characteristics; 8. Extremal properties; Part II. Basic Model Extensions: 9. Inhomogeneous graphs; 10. Fixed degree sequence; 11. Intersection graphs; 12. Digraphs; 13. Hypergraphs; Part III. Other Models: 14. Trees; 15. Mappings; 16. k-out; 17. Real-world networks; 18. Weighted graphs; 19. Brief notes on uncovered topics; Part IV. Tools and Methods: 20. Moments; 21. Inequalities; 22. Differential equations method; 23. Branching processes; 24. Entropy; References; Author index; Main index Random graphs Combinatorial probabilities Probabilities Zufallsgraph (DE-588)4277661-2 gnd |
subject_GND | (DE-588)4277661-2 |
title | Introduction to random graphs |
title_auth | Introduction to random graphs |
title_exact_search | Introduction to random graphs |
title_full | Introduction to random graphs Alan Frieze, Carnegie-Mellon University, Pennsylvania, Michał Karoński, Adam Mickiewicz University and Emory University |
title_fullStr | Introduction to random graphs Alan Frieze, Carnegie-Mellon University, Pennsylvania, Michał Karoński, Adam Mickiewicz University and Emory University |
title_full_unstemmed | Introduction to random graphs Alan Frieze, Carnegie-Mellon University, Pennsylvania, Michał Karoński, Adam Mickiewicz University and Emory University |
title_short | Introduction to random graphs |
title_sort | introduction to random graphs |
topic | Random graphs Combinatorial probabilities Probabilities Zufallsgraph (DE-588)4277661-2 gnd |
topic_facet | Random graphs Combinatorial probabilities Probabilities Zufallsgraph |
url | https://doi.org/10.1017/CBO9781316339831 |
work_keys_str_mv | AT friezealan introductiontorandomgraphs AT karonskimichał introductiontorandomgraphs |