Geometry in a Fréchet contex: a projective limit approach
Many geometrical features of manifolds and fibre bundles modelled on Fréchet spaces either cannot be defined or are difficult to handle directly. This is due to the inherent deficiencies of Fréchet spaces; for example, the lack of a general solvability theory for differential equations, the non-exis...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | London Mathematical Society lecture note series
428 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Many geometrical features of manifolds and fibre bundles modelled on Fréchet spaces either cannot be defined or are difficult to handle directly. This is due to the inherent deficiencies of Fréchet spaces; for example, the lack of a general solvability theory for differential equations, the non-existence of a reasonable Lie group structure on the general linear group of a Fréchet space, and the non-existence of an exponential map in a Fréchet–Lie group. In this book, the authors describe in detail a new approach that overcomes many of these limitations by using projective limits of geometrical objects modelled on Banach spaces. It will appeal to researchers and graduate students from a variety of backgrounds with an interest in infinite-dimensional geometry. The book concludes with an appendix outlining potential applications and motivating future research |
Beschreibung: | 1 online resource (xii, 302 pages) |
ISBN: | 9781316556092 |
DOI: | 10.1017/CBO9781316556092 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940219 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316556092 |c Online |9 978-1-316-55609-2 | ||
024 | 7 | |a 10.1017/CBO9781316556092 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316556092 | ||
035 | |a (OCoLC)967758700 | ||
035 | |a (DE-599)BVBBV043940219 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.732 |2 23 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
100 | 1 | |a Dodson, C. T. J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry in a Fréchet contex |b a projective limit approach |c C.T.J. Dodson, University of Manchester, George Galanis, Hellenic Naval Academy, Piraeus, Greece, Efstathios Vassiliou, University of Athens, Greece |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xii, 302 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 428 | |
520 | |a Many geometrical features of manifolds and fibre bundles modelled on Fréchet spaces either cannot be defined or are difficult to handle directly. This is due to the inherent deficiencies of Fréchet spaces; for example, the lack of a general solvability theory for differential equations, the non-existence of a reasonable Lie group structure on the general linear group of a Fréchet space, and the non-existence of an exponential map in a Fréchet–Lie group. In this book, the authors describe in detail a new approach that overcomes many of these limitations by using projective limits of geometrical objects modelled on Banach spaces. It will appeal to researchers and graduate students from a variety of backgrounds with an interest in infinite-dimensional geometry. The book concludes with an appendix outlining potential applications and motivating future research | ||
650 | 4 | |a Fréchet spaces | |
650 | 4 | |a Banach spaces | |
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Fréchet-Mannigfaltigkeit |0 (DE-588)4384700-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fréchet-Mannigfaltigkeit |0 (DE-588)4384700-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Galanis, George |e Sonstige |4 oth | |
700 | 1 | |a Vassiliou, E. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-316-60195-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316556092 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349189 | ||
966 | e | |u https://doi.org/10.1017/CBO9781316556092 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316556092 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880479240192 |
---|---|
any_adam_object | |
author | Dodson, C. T. J. |
author_facet | Dodson, C. T. J. |
author_role | aut |
author_sort | Dodson, C. T. J. |
author_variant | c t j d ctj ctjd |
building | Verbundindex |
bvnumber | BV043940219 |
classification_rvk | SI 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316556092 (OCoLC)967758700 (DE-599)BVBBV043940219 |
dewey-full | 515/.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.732 |
dewey-search | 515/.732 |
dewey-sort | 3515 3732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316556092 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02813nmm a2200481zcb4500</leader><controlfield tag="001">BV043940219</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316556092</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-55609-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316556092</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316556092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967758700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.732</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dodson, C. T. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry in a Fréchet contex</subfield><subfield code="b">a projective limit approach</subfield><subfield code="c">C.T.J. Dodson, University of Manchester, George Galanis, Hellenic Naval Academy, Piraeus, Greece, Efstathios Vassiliou, University of Athens, Greece</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 302 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">428</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many geometrical features of manifolds and fibre bundles modelled on Fréchet spaces either cannot be defined or are difficult to handle directly. This is due to the inherent deficiencies of Fréchet spaces; for example, the lack of a general solvability theory for differential equations, the non-existence of a reasonable Lie group structure on the general linear group of a Fréchet space, and the non-existence of an exponential map in a Fréchet–Lie group. In this book, the authors describe in detail a new approach that overcomes many of these limitations by using projective limits of geometrical objects modelled on Banach spaces. It will appeal to researchers and graduate students from a variety of backgrounds with an interest in infinite-dimensional geometry. The book concludes with an appendix outlining potential applications and motivating future research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fréchet spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fréchet-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4384700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fréchet-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4384700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galanis, George</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vassiliou, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-316-60195-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316556092</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349189</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316556092</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316556092</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940219 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316556092 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349189 |
oclc_num | 967758700 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 302 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Dodson, C. T. J. Verfasser aut Geometry in a Fréchet contex a projective limit approach C.T.J. Dodson, University of Manchester, George Galanis, Hellenic Naval Academy, Piraeus, Greece, Efstathios Vassiliou, University of Athens, Greece Cambridge Cambridge University Press 2016 1 online resource (xii, 302 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 428 Many geometrical features of manifolds and fibre bundles modelled on Fréchet spaces either cannot be defined or are difficult to handle directly. This is due to the inherent deficiencies of Fréchet spaces; for example, the lack of a general solvability theory for differential equations, the non-existence of a reasonable Lie group structure on the general linear group of a Fréchet space, and the non-existence of an exponential map in a Fréchet–Lie group. In this book, the authors describe in detail a new approach that overcomes many of these limitations by using projective limits of geometrical objects modelled on Banach spaces. It will appeal to researchers and graduate students from a variety of backgrounds with an interest in infinite-dimensional geometry. The book concludes with an appendix outlining potential applications and motivating future research Fréchet spaces Banach spaces Geometry, Differential Fréchet-Mannigfaltigkeit (DE-588)4384700-6 gnd rswk-swf Fréchet-Mannigfaltigkeit (DE-588)4384700-6 s DE-604 Galanis, George Sonstige oth Vassiliou, E. Sonstige oth Erscheint auch als Druckausgabe 978-1-316-60195-2 https://doi.org/10.1017/CBO9781316556092 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dodson, C. T. J. Geometry in a Fréchet contex a projective limit approach Fréchet spaces Banach spaces Geometry, Differential Fréchet-Mannigfaltigkeit (DE-588)4384700-6 gnd |
subject_GND | (DE-588)4384700-6 |
title | Geometry in a Fréchet contex a projective limit approach |
title_auth | Geometry in a Fréchet contex a projective limit approach |
title_exact_search | Geometry in a Fréchet contex a projective limit approach |
title_full | Geometry in a Fréchet contex a projective limit approach C.T.J. Dodson, University of Manchester, George Galanis, Hellenic Naval Academy, Piraeus, Greece, Efstathios Vassiliou, University of Athens, Greece |
title_fullStr | Geometry in a Fréchet contex a projective limit approach C.T.J. Dodson, University of Manchester, George Galanis, Hellenic Naval Academy, Piraeus, Greece, Efstathios Vassiliou, University of Athens, Greece |
title_full_unstemmed | Geometry in a Fréchet contex a projective limit approach C.T.J. Dodson, University of Manchester, George Galanis, Hellenic Naval Academy, Piraeus, Greece, Efstathios Vassiliou, University of Athens, Greece |
title_short | Geometry in a Fréchet contex |
title_sort | geometry in a frechet contex a projective limit approach |
title_sub | a projective limit approach |
topic | Fréchet spaces Banach spaces Geometry, Differential Fréchet-Mannigfaltigkeit (DE-588)4384700-6 gnd |
topic_facet | Fréchet spaces Banach spaces Geometry, Differential Fréchet-Mannigfaltigkeit |
url | https://doi.org/10.1017/CBO9781316556092 |
work_keys_str_mv | AT dodsonctj geometryinafrechetcontexaprojectivelimitapproach AT galanisgeorge geometryinafrechetcontexaprojectivelimitapproach AT vassilioue geometryinafrechetcontexaprojectivelimitapproach |