Pseudo-reductive groups:
Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Ausgabe: | Second edition |
Schriftenreihe: | New mathematical monographs
26 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In this second edition there is new material on relative root systems and Tits systems for general smooth affine groups, including the extension to quasi-reductive groups of famous simplicity results of Tits in the semisimple case. Chapter 9 has been completely rewritten to describe and classify pseudo-split absolutely pseudo-simple groups with a non-reduced root system over arbitrary fields of characteristic 2 via the useful new notion of 'minimal type' for pseudo-reductive groups. Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will value this book, as it develops tools likely to be used in tackling other problems |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxiv, 665 pages) |
ISBN: | 9781316092439 |
DOI: | 10.1017/CBO9781316092439 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940202 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316092439 |c Online |9 978-1-316-09243-9 | ||
024 | 7 | |a 10.1017/CBO9781316092439 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316092439 | ||
035 | |a (OCoLC)910524527 | ||
035 | |a (DE-599)BVBBV043940202 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Conrad, Brian |d 1970- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pseudo-reductive groups |c Brian Conrad, Stanford University, Ofer Gabber, Institut des hautes études scientifiques, Gopal Prasad, University of Michigan |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (xxiv, 665 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 26 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Introduction -- Terminology, conventions, and notation -- Part I: Constructions, Examples, and Structure Theory. 1. Overview of pseudo-reductivity ; 2. Root groups and root systems ; 3. Basic structure theory -- Part II: Standard Presentations and Their Applications. 4. Variation of (G', k'/k, T', C) ; 5. Ubiquity of the standard construction ; 6. Classification results -- Part III: General Classification and Applications. 7. The exotic constructions ; 8. Preparations for classification in characteristics 2 and 3 ; 9. Absolutely pseudo-simple groups in characteristic 2 ; 10. General case ; 11. Applications -- Part IV: Appendices. A. Background in linear algebraic groups ; B. Tits' work on unipotent groups in nonzero characteristic ; C. Rational conjugacy in connected groups -- References -- Index | |
520 | |a Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In this second edition there is new material on relative root systems and Tits systems for general smooth affine groups, including the extension to quasi-reductive groups of famous simplicity results of Tits in the semisimple case. Chapter 9 has been completely rewritten to describe and classify pseudo-split absolutely pseudo-simple groups with a non-reduced root system over arbitrary fields of characteristic 2 via the useful new notion of 'minimal type' for pseudo-reductive groups. Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will value this book, as it develops tools likely to be used in tackling other problems | ||
650 | 4 | |a Linear algebraic groups | |
650 | 4 | |a Group theory | |
650 | 0 | 7 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | 1 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Gabber, Ofer |d 1958- |e Sonstige |4 oth | |
700 | 1 | |a Prasad, Gopal |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-08723-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316092439 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349172 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781316092439 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316092439 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880426811392 |
---|---|
any_adam_object | |
author | Conrad, Brian 1970- |
author_facet | Conrad, Brian 1970- |
author_role | aut |
author_sort | Conrad, Brian 1970- |
author_variant | b c bc |
building | Verbundindex |
bvnumber | BV043940202 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
contents | Introduction -- Terminology, conventions, and notation -- Part I: Constructions, Examples, and Structure Theory. 1. Overview of pseudo-reductivity ; 2. Root groups and root systems ; 3. Basic structure theory -- Part II: Standard Presentations and Their Applications. 4. Variation of (G', k'/k, T', C) ; 5. Ubiquity of the standard construction ; 6. Classification results -- Part III: General Classification and Applications. 7. The exotic constructions ; 8. Preparations for classification in characteristics 2 and 3 ; 9. Absolutely pseudo-simple groups in characteristic 2 ; 10. General case ; 11. Applications -- Part IV: Appendices. A. Background in linear algebraic groups ; B. Tits' work on unipotent groups in nonzero characteristic ; C. Rational conjugacy in connected groups -- References -- Index |
ctrlnum | (ZDB-20-CBO)CR9781316092439 (OCoLC)910524527 (DE-599)BVBBV043940202 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316092439 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03995nmm a2200541zcb4500</leader><controlfield tag="001">BV043940202</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316092439</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-09243-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316092439</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316092439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)910524527</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940202</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conrad, Brian</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pseudo-reductive groups</subfield><subfield code="c">Brian Conrad, Stanford University, Ofer Gabber, Institut des hautes études scientifiques, Gopal Prasad, University of Michigan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiv, 665 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">26</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- Terminology, conventions, and notation -- Part I: Constructions, Examples, and Structure Theory. 1. Overview of pseudo-reductivity ; 2. Root groups and root systems ; 3. Basic structure theory -- Part II: Standard Presentations and Their Applications. 4. Variation of (G', k'/k, T', C) ; 5. Ubiquity of the standard construction ; 6. Classification results -- Part III: General Classification and Applications. 7. The exotic constructions ; 8. Preparations for classification in characteristics 2 and 3 ; 9. Absolutely pseudo-simple groups in characteristic 2 ; 10. General case ; 11. Applications -- Part IV: Appendices. A. Background in linear algebraic groups ; B. Tits' work on unipotent groups in nonzero characteristic ; C. Rational conjugacy in connected groups -- References -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In this second edition there is new material on relative root systems and Tits systems for general smooth affine groups, including the extension to quasi-reductive groups of famous simplicity results of Tits in the semisimple case. Chapter 9 has been completely rewritten to describe and classify pseudo-split absolutely pseudo-simple groups with a non-reduced root system over arbitrary fields of characteristic 2 via the useful new notion of 'minimal type' for pseudo-reductive groups. Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will value this book, as it develops tools likely to be used in tackling other problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gabber, Ofer</subfield><subfield code="d">1958-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Gopal</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-08723-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316092439</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349172</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316092439</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316092439</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940202 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316092439 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349172 |
oclc_num | 910524527 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxiv, 665 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Conrad, Brian 1970- Verfasser aut Pseudo-reductive groups Brian Conrad, Stanford University, Ofer Gabber, Institut des hautes études scientifiques, Gopal Prasad, University of Michigan Second edition Cambridge Cambridge University Press 2015 1 online resource (xxiv, 665 pages) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 26 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Introduction -- Terminology, conventions, and notation -- Part I: Constructions, Examples, and Structure Theory. 1. Overview of pseudo-reductivity ; 2. Root groups and root systems ; 3. Basic structure theory -- Part II: Standard Presentations and Their Applications. 4. Variation of (G', k'/k, T', C) ; 5. Ubiquity of the standard construction ; 6. Classification results -- Part III: General Classification and Applications. 7. The exotic constructions ; 8. Preparations for classification in characteristics 2 and 3 ; 9. Absolutely pseudo-simple groups in characteristic 2 ; 10. General case ; 11. Applications -- Part IV: Appendices. A. Background in linear algebraic groups ; B. Tits' work on unipotent groups in nonzero characteristic ; C. Rational conjugacy in connected groups -- References -- Index Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In this second edition there is new material on relative root systems and Tits systems for general smooth affine groups, including the extension to quasi-reductive groups of famous simplicity results of Tits in the semisimple case. Chapter 9 has been completely rewritten to describe and classify pseudo-split absolutely pseudo-simple groups with a non-reduced root system over arbitrary fields of characteristic 2 via the useful new notion of 'minimal type' for pseudo-reductive groups. Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will value this book, as it develops tools likely to be used in tackling other problems Linear algebraic groups Group theory Lineare algebraische Gruppe (DE-588)4295326-1 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 s Lineare algebraische Gruppe (DE-588)4295326-1 s 1\p DE-604 Gabber, Ofer 1958- Sonstige oth Prasad, Gopal Sonstige oth Erscheint auch als Druckausgabe 978-1-107-08723-1 https://doi.org/10.1017/CBO9781316092439 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Conrad, Brian 1970- Pseudo-reductive groups Introduction -- Terminology, conventions, and notation -- Part I: Constructions, Examples, and Structure Theory. 1. Overview of pseudo-reductivity ; 2. Root groups and root systems ; 3. Basic structure theory -- Part II: Standard Presentations and Their Applications. 4. Variation of (G', k'/k, T', C) ; 5. Ubiquity of the standard construction ; 6. Classification results -- Part III: General Classification and Applications. 7. The exotic constructions ; 8. Preparations for classification in characteristics 2 and 3 ; 9. Absolutely pseudo-simple groups in characteristic 2 ; 10. General case ; 11. Applications -- Part IV: Appendices. A. Background in linear algebraic groups ; B. Tits' work on unipotent groups in nonzero characteristic ; C. Rational conjugacy in connected groups -- References -- Index Linear algebraic groups Group theory Lineare algebraische Gruppe (DE-588)4295326-1 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
subject_GND | (DE-588)4295326-1 (DE-588)4177313-5 |
title | Pseudo-reductive groups |
title_auth | Pseudo-reductive groups |
title_exact_search | Pseudo-reductive groups |
title_full | Pseudo-reductive groups Brian Conrad, Stanford University, Ofer Gabber, Institut des hautes études scientifiques, Gopal Prasad, University of Michigan |
title_fullStr | Pseudo-reductive groups Brian Conrad, Stanford University, Ofer Gabber, Institut des hautes études scientifiques, Gopal Prasad, University of Michigan |
title_full_unstemmed | Pseudo-reductive groups Brian Conrad, Stanford University, Ofer Gabber, Institut des hautes études scientifiques, Gopal Prasad, University of Michigan |
title_short | Pseudo-reductive groups |
title_sort | pseudo reductive groups |
topic | Linear algebraic groups Group theory Lineare algebraische Gruppe (DE-588)4295326-1 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
topic_facet | Linear algebraic groups Group theory Lineare algebraische Gruppe Reduktive Gruppe |
url | https://doi.org/10.1017/CBO9781316092439 |
work_keys_str_mv | AT conradbrian pseudoreductivegroups AT gabberofer pseudoreductivegroups AT prasadgopal pseudoreductivegroups |