Special functions and orthogonal polynomials:
The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and or...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Cambridge studies in advanced mathematics
153 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-355 Volltext |
Zusammenfassung: | The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century' |
Beschreibung: | 1 online resource (xiii, 473 Seiten) |
ISBN: | 9781316227381 |
DOI: | 10.1017/CBO9781316227381 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940184 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316227381 |c Online |9 978-1-316-22738-1 | ||
024 | 7 | |a 10.1017/CBO9781316227381 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316227381 | ||
035 | |a (OCoLC)967599029 | ||
035 | |a (DE-599)BVBBV043940184 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 515/.55 |2 23 | |
084 | |a SK 680 |0 (DE-625)143252: |2 rvk | ||
100 | 1 | |a Beals, Richard |d 1938- |0 (DE-588)10795320X |4 aut | |
245 | 1 | 0 | |a Special functions and orthogonal polynomials |c Richard Beals, Roderick S.C. Wong |
246 | 1 | 3 | |a Special Functions & Orthogonal Polynomials |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xiii, 473 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 153 | |
520 | |a The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century' | ||
650 | 4 | |a Orthogonal polynomials | |
650 | 4 | |a Functions, Special | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Spezielle Funktion |0 (DE-588)4182213-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | 1 | |a Spezielle Funktion |0 (DE-588)4182213-4 |D s |
689 | 0 | 2 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wong, Roderick |d 1944- |0 (DE-588)139039384 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-10698-7 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 153 |w (DE-604)BV044781283 |9 153 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316227381 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029349154 | |
966 | e | |u https://doi.org/10.1017/CBO9781316227381 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316227381 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316227381 |l DE-355 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1808134606818377728 |
---|---|
adam_text | |
any_adam_object | |
author | Beals, Richard 1938- Wong, Roderick 1944- |
author_GND | (DE-588)10795320X (DE-588)139039384 |
author_facet | Beals, Richard 1938- Wong, Roderick 1944- |
author_role | aut aut |
author_sort | Beals, Richard 1938- |
author_variant | r b rb r w rw |
building | Verbundindex |
bvnumber | BV043940184 |
classification_rvk | SK 680 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316227381 (OCoLC)967599029 (DE-599)BVBBV043940184 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316227381 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV043940184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316227381</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-22738-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316227381</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316227381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967599029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="0">(DE-625)143252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beals, Richard</subfield><subfield code="d">1938-</subfield><subfield code="0">(DE-588)10795320X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Special functions and orthogonal polynomials</subfield><subfield code="c">Richard Beals, Roderick S.C. Wong</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Special Functions & Orthogonal Polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 473 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">153</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century'</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Roderick</subfield><subfield code="d">1944-</subfield><subfield code="0">(DE-588)139039384</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-10698-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">153</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">153</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316227381</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349154</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316227381</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316227381</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316227381</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940184 |
illustrated | Not Illustrated |
indexdate | 2024-08-23T00:05:34Z |
institution | BVB |
isbn | 9781316227381 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349154 |
oclc_num | 967599029 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (xiii, 473 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Beals, Richard 1938- (DE-588)10795320X aut Special functions and orthogonal polynomials Richard Beals, Roderick S.C. Wong Special Functions & Orthogonal Polynomials Cambridge Cambridge University Press 2016 1 online resource (xiii, 473 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 153 The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century' Orthogonal polynomials Functions, Special Mathematical analysis Spezielle Funktion (DE-588)4182213-4 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Analysis (DE-588)4001865-9 s Spezielle Funktion (DE-588)4182213-4 s Orthogonale Polynome (DE-588)4172863-4 s DE-604 Wong, Roderick 1944- (DE-588)139039384 aut Erscheint auch als Druck-Ausgabe 978-1-107-10698-7 Cambridge studies in advanced mathematics 153 (DE-604)BV044781283 153 https://doi.org/10.1017/CBO9781316227381 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Beals, Richard 1938- Wong, Roderick 1944- Special functions and orthogonal polynomials Cambridge studies in advanced mathematics Orthogonal polynomials Functions, Special Mathematical analysis Spezielle Funktion (DE-588)4182213-4 gnd Analysis (DE-588)4001865-9 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
subject_GND | (DE-588)4182213-4 (DE-588)4001865-9 (DE-588)4172863-4 |
title | Special functions and orthogonal polynomials |
title_alt | Special Functions & Orthogonal Polynomials |
title_auth | Special functions and orthogonal polynomials |
title_exact_search | Special functions and orthogonal polynomials |
title_full | Special functions and orthogonal polynomials Richard Beals, Roderick S.C. Wong |
title_fullStr | Special functions and orthogonal polynomials Richard Beals, Roderick S.C. Wong |
title_full_unstemmed | Special functions and orthogonal polynomials Richard Beals, Roderick S.C. Wong |
title_short | Special functions and orthogonal polynomials |
title_sort | special functions and orthogonal polynomials |
topic | Orthogonal polynomials Functions, Special Mathematical analysis Spezielle Funktion (DE-588)4182213-4 gnd Analysis (DE-588)4001865-9 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
topic_facet | Orthogonal polynomials Functions, Special Mathematical analysis Spezielle Funktion Analysis Orthogonale Polynome |
url | https://doi.org/10.1017/CBO9781316227381 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT bealsrichard specialfunctionsandorthogonalpolynomials AT wongroderick specialfunctionsandorthogonalpolynomials AT bealsrichard specialfunctionsorthogonalpolynomials AT wongroderick specialfunctionsorthogonalpolynomials |