Classical groups, derangements, and primes:
A classical theorem of Jordan states that every finite transitive permutation group contains a derangement. This existence result has interesting and unexpected applications in many areas of mathematics, including graph theory, number theory and topology. Various generalisations have been studied in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Australian Mathematical Society lecture series
25 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | A classical theorem of Jordan states that every finite transitive permutation group contains a derangement. This existence result has interesting and unexpected applications in many areas of mathematics, including graph theory, number theory and topology. Various generalisations have been studied in more recent years, with a particular focus on the existence of derangements with special properties. Written for academic researchers and postgraduate students working in related areas of algebra, this introduction to the finite classical groups features a comprehensive account of the conjugacy and geometry of elements of prime order. The development is tailored towards the study of derangements in finite primitive classical groups; the basic problem is to determine when such a group G contains a derangement of prime order r, for each prime divisor r of the degree of G. This involves a detailed analysis of the conjugacy classes and subgroup structure of the finite classical groups |
Beschreibung: | Title from publisher's bibliographic system (viewed on 01 Jan 2016) |
Beschreibung: | 1 online resource (xviii, 346 pages) |
ISBN: | 9781139059060 |
DOI: | 10.1017/CBO9781139059060 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940183 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781139059060 |c Online |9 978-1-139-05906-0 | ||
024 | 7 | |a 10.1017/CBO9781139059060 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139059060 | ||
035 | |a (OCoLC)967599622 | ||
035 | |a (DE-599)BVBBV043940183 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Burness, Timothy C. |d 1979- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Classical groups, derangements, and primes |c Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth |
246 | 1 | 3 | |a Classical Groups, Derangements & Primes |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xviii, 346 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Australian Mathematical Society lecture series |v 25 | |
500 | |a Title from publisher's bibliographic system (viewed on 01 Jan 2016) | ||
520 | |a A classical theorem of Jordan states that every finite transitive permutation group contains a derangement. This existence result has interesting and unexpected applications in many areas of mathematics, including graph theory, number theory and topology. Various generalisations have been studied in more recent years, with a particular focus on the existence of derangements with special properties. Written for academic researchers and postgraduate students working in related areas of algebra, this introduction to the finite classical groups features a comprehensive account of the conjugacy and geometry of elements of prime order. The development is tailored towards the study of derangements in finite primitive classical groups; the basic problem is to determine when such a group G contains a derangement of prime order r, for each prime divisor r of the degree of G. This involves a detailed analysis of the conjugacy classes and subgroup structure of the finite classical groups | ||
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Group theory | |
650 | 4 | |a Algebra | |
650 | 4 | |a Numbers, Prime | |
700 | 1 | |a Giudici, Michael |d 1976- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-62944-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139059060 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349153 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139059060 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139059060 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880337682432 |
---|---|
any_adam_object | |
author | Burness, Timothy C. 1979- |
author_facet | Burness, Timothy C. 1979- |
author_role | aut |
author_sort | Burness, Timothy C. 1979- |
author_variant | t c b tc tcb |
building | Verbundindex |
bvnumber | BV043940183 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139059060 (OCoLC)967599622 (DE-599)BVBBV043940183 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139059060 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02842nmm a2200469zcb4500</leader><controlfield tag="001">BV043940183</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139059060</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-05906-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139059060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139059060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967599622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940183</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burness, Timothy C.</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical groups, derangements, and primes</subfield><subfield code="c">Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Classical Groups, Derangements & Primes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 346 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Australian Mathematical Society lecture series</subfield><subfield code="v">25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 01 Jan 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A classical theorem of Jordan states that every finite transitive permutation group contains a derangement. This existence result has interesting and unexpected applications in many areas of mathematics, including graph theory, number theory and topology. Various generalisations have been studied in more recent years, with a particular focus on the existence of derangements with special properties. Written for academic researchers and postgraduate students working in related areas of algebra, this introduction to the finite classical groups features a comprehensive account of the conjugacy and geometry of elements of prime order. The development is tailored towards the study of derangements in finite primitive classical groups; the basic problem is to determine when such a group G contains a derangement of prime order r, for each prime divisor r of the degree of G. This involves a detailed analysis of the conjugacy classes and subgroup structure of the finite classical groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Prime</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giudici, Michael</subfield><subfield code="d">1976-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-62944-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139059060</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349153</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139059060</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139059060</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940183 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781139059060 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349153 |
oclc_num | 967599622 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xviii, 346 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Australian Mathematical Society lecture series |
spelling | Burness, Timothy C. 1979- Verfasser aut Classical groups, derangements, and primes Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth Classical Groups, Derangements & Primes Cambridge Cambridge University Press 2016 1 online resource (xviii, 346 pages) txt rdacontent c rdamedia cr rdacarrier Australian Mathematical Society lecture series 25 Title from publisher's bibliographic system (viewed on 01 Jan 2016) A classical theorem of Jordan states that every finite transitive permutation group contains a derangement. This existence result has interesting and unexpected applications in many areas of mathematics, including graph theory, number theory and topology. Various generalisations have been studied in more recent years, with a particular focus on the existence of derangements with special properties. Written for academic researchers and postgraduate students working in related areas of algebra, this introduction to the finite classical groups features a comprehensive account of the conjugacy and geometry of elements of prime order. The development is tailored towards the study of derangements in finite primitive classical groups; the basic problem is to determine when such a group G contains a derangement of prime order r, for each prime divisor r of the degree of G. This involves a detailed analysis of the conjugacy classes and subgroup structure of the finite classical groups Logic, Symbolic and mathematical Group theory Algebra Numbers, Prime Giudici, Michael 1976- Sonstige oth Erscheint auch als Druckausgabe 978-1-107-62944-8 https://doi.org/10.1017/CBO9781139059060 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Burness, Timothy C. 1979- Classical groups, derangements, and primes Logic, Symbolic and mathematical Group theory Algebra Numbers, Prime |
title | Classical groups, derangements, and primes |
title_alt | Classical Groups, Derangements & Primes |
title_auth | Classical groups, derangements, and primes |
title_exact_search | Classical groups, derangements, and primes |
title_full | Classical groups, derangements, and primes Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth |
title_fullStr | Classical groups, derangements, and primes Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth |
title_full_unstemmed | Classical groups, derangements, and primes Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth |
title_short | Classical groups, derangements, and primes |
title_sort | classical groups derangements and primes |
topic | Logic, Symbolic and mathematical Group theory Algebra Numbers, Prime |
topic_facet | Logic, Symbolic and mathematical Group theory Algebra Numbers, Prime |
url | https://doi.org/10.1017/CBO9781139059060 |
work_keys_str_mv | AT burnesstimothyc classicalgroupsderangementsandprimes AT giudicimichael classicalgroupsderangementsandprimes AT burnesstimothyc classicalgroupsderangementsprimes AT giudicimichael classicalgroupsderangementsprimes |