Advanced state space methods for neural and clinical data:
This authoritative work provides an in-depth treatment of state space methods, with a range of applications in neural and clinical data. Advanced and state-of-the-art research topics are detailed, including topics in state space analyses, maximum likelihood methods, variational Bayes, sequential Mon...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This authoritative work provides an in-depth treatment of state space methods, with a range of applications in neural and clinical data. Advanced and state-of-the-art research topics are detailed, including topics in state space analyses, maximum likelihood methods, variational Bayes, sequential Monte Carlo, Markov chain Monte Carlo, nonparametric Bayesian, and deep learning methods. Details are provided on practical applications in neural and clinical data, whether this is characterising time series data from neural spike trains recorded from the rat hippocampus, the primate motor cortex, or the human EEG, MEG or fMRI, or physiological measurements of heartbeats or blood pressures. With real-world case studies of neuroscience experiments and clinical data sets, and written by expert authors from across the field, this is an ideal resource for anyone working in neuroscience and physiological data analysis |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxii, 374 pages) |
ISBN: | 9781139941433 |
DOI: | 10.1017/CBO9781139941433 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940166 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781139941433 |c Online |9 978-1-139-94143-3 | ||
024 | 7 | |a 10.1017/CBO9781139941433 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139941433 | ||
035 | |a (OCoLC)992910348 | ||
035 | |a (DE-599)BVBBV043940166 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 616.8001/1 |2 23 | |
245 | 1 | 0 | |a Advanced state space methods for neural and clinical data |c edited by Zhe Chen |
246 | 1 | 3 | |a Advanced State Space Methods for Neural & Clinical Data |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (xxii, 374 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Inference and learning in latent Markov models / D. Barber and S. Chiappa -- State space methods for MEG source reconstruction / M. Fukushima, O. Yamashita, and M. Sato -- Autoregressive modeling of FMRI time series : state space approaches and the general linear model / A. Galka [and others] -- State space models and their spectral decomposition in dynamic causal modeling / R. Moran -- Estimating state and parameters in state space models of spike trains / J.H. Macke, L. Buesing, and M. Sahani -- Bayesian inference for latent stepping and ramping models of spike train data / K.W. Latimer, A.C. Huk, and J.W. Pillow -- Probabilistic approaches to uncover rat hippocampal population codes / Z. Chen, F. Kloosterman, and M.A. Wilson -- Neural decoding in motor cortex using state space models with hidden states / W. Wuand S. Liu -- State-space modeling for analysis of behavior in learning experiments / A.C. Smith -- Bayesian nonparametric learning of switching dynamics in cohort physiological time series : application in critical care patient monitoring / L.H. Lehman, M.J. Johnson, S. Nemati, R.P. Adams and R.G. Mark -- Identifying outcome-discriminative dynamics in multivariate physiological cohort time series / S. Nemati and R.P. Adams -- A dynamic point process framework for assessing heartbeat dynamics and cardiovascular functions / Z. Chen and R. Barbieri -- Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression / M.B. Westover, S. Ching, M.M. Shafi, S.S. Cash and E.N. Brown -- Signal quality indices for state-space electrophysiological signal processing and vice versa / J. Oster and G.D. Clifford | |
520 | |a This authoritative work provides an in-depth treatment of state space methods, with a range of applications in neural and clinical data. Advanced and state-of-the-art research topics are detailed, including topics in state space analyses, maximum likelihood methods, variational Bayes, sequential Monte Carlo, Markov chain Monte Carlo, nonparametric Bayesian, and deep learning methods. Details are provided on practical applications in neural and clinical data, whether this is characterising time series data from neural spike trains recorded from the rat hippocampus, the primate motor cortex, or the human EEG, MEG or fMRI, or physiological measurements of heartbeats or blood pressures. With real-world case studies of neuroscience experiments and clinical data sets, and written by expert authors from across the field, this is an ideal resource for anyone working in neuroscience and physiological data analysis | ||
650 | 4 | |a Nervous system / Diseases | |
650 | 4 | |a State-space methods | |
700 | 1 | |a Chen, Zhe |d 1976- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-07919-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139941433 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349136 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139941433 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139941433 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880266379264 |
---|---|
any_adam_object | |
author2 | Chen, Zhe 1976- |
author2_role | edt |
author2_variant | z c zc |
author_facet | Chen, Zhe 1976- |
building | Verbundindex |
bvnumber | BV043940166 |
collection | ZDB-20-CBO |
contents | Inference and learning in latent Markov models / D. Barber and S. Chiappa -- State space methods for MEG source reconstruction / M. Fukushima, O. Yamashita, and M. Sato -- Autoregressive modeling of FMRI time series : state space approaches and the general linear model / A. Galka [and others] -- State space models and their spectral decomposition in dynamic causal modeling / R. Moran -- Estimating state and parameters in state space models of spike trains / J.H. Macke, L. Buesing, and M. Sahani -- Bayesian inference for latent stepping and ramping models of spike train data / K.W. Latimer, A.C. Huk, and J.W. Pillow -- Probabilistic approaches to uncover rat hippocampal population codes / Z. Chen, F. Kloosterman, and M.A. Wilson -- Neural decoding in motor cortex using state space models with hidden states / W. Wuand S. Liu -- State-space modeling for analysis of behavior in learning experiments / A.C. Smith -- Bayesian nonparametric learning of switching dynamics in cohort physiological time series : application in critical care patient monitoring / L.H. Lehman, M.J. Johnson, S. Nemati, R.P. Adams and R.G. Mark -- Identifying outcome-discriminative dynamics in multivariate physiological cohort time series / S. Nemati and R.P. Adams -- A dynamic point process framework for assessing heartbeat dynamics and cardiovascular functions / Z. Chen and R. Barbieri -- Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression / M.B. Westover, S. Ching, M.M. Shafi, S.S. Cash and E.N. Brown -- Signal quality indices for state-space electrophysiological signal processing and vice versa / J. Oster and G.D. Clifford |
ctrlnum | (ZDB-20-CBO)CR9781139941433 (OCoLC)992910348 (DE-599)BVBBV043940166 |
dewey-full | 616.8001/1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 616 - Diseases |
dewey-raw | 616.8001/1 |
dewey-search | 616.8001/1 |
dewey-sort | 3616.8001 11 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
doi_str_mv | 10.1017/CBO9781139941433 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04171nmm a2200421zc 4500</leader><controlfield tag="001">BV043940166</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139941433</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-94143-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139941433</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139941433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992910348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940166</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.8001/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced state space methods for neural and clinical data</subfield><subfield code="c">edited by Zhe Chen</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Advanced State Space Methods for Neural & Clinical Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 374 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Inference and learning in latent Markov models / D. Barber and S. Chiappa -- State space methods for MEG source reconstruction / M. Fukushima, O. Yamashita, and M. Sato -- Autoregressive modeling of FMRI time series : state space approaches and the general linear model / A. Galka [and others] -- State space models and their spectral decomposition in dynamic causal modeling / R. Moran -- Estimating state and parameters in state space models of spike trains / J.H. Macke, L. Buesing, and M. Sahani -- Bayesian inference for latent stepping and ramping models of spike train data / K.W. Latimer, A.C. Huk, and J.W. Pillow -- Probabilistic approaches to uncover rat hippocampal population codes / Z. Chen, F. Kloosterman, and M.A. Wilson -- Neural decoding in motor cortex using state space models with hidden states / W. Wuand S. Liu -- State-space modeling for analysis of behavior in learning experiments / A.C. Smith -- Bayesian nonparametric learning of switching dynamics in cohort physiological time series : application in critical care patient monitoring / L.H. Lehman, M.J. Johnson, S. Nemati, R.P. Adams and R.G. Mark -- Identifying outcome-discriminative dynamics in multivariate physiological cohort time series / S. Nemati and R.P. Adams -- A dynamic point process framework for assessing heartbeat dynamics and cardiovascular functions / Z. Chen and R. Barbieri -- Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression / M.B. Westover, S. Ching, M.M. Shafi, S.S. Cash and E.N. Brown -- Signal quality indices for state-space electrophysiological signal processing and vice versa / J. Oster and G.D. Clifford</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This authoritative work provides an in-depth treatment of state space methods, with a range of applications in neural and clinical data. Advanced and state-of-the-art research topics are detailed, including topics in state space analyses, maximum likelihood methods, variational Bayes, sequential Monte Carlo, Markov chain Monte Carlo, nonparametric Bayesian, and deep learning methods. Details are provided on practical applications in neural and clinical data, whether this is characterising time series data from neural spike trains recorded from the rat hippocampus, the primate motor cortex, or the human EEG, MEG or fMRI, or physiological measurements of heartbeats or blood pressures. With real-world case studies of neuroscience experiments and clinical data sets, and written by expert authors from across the field, this is an ideal resource for anyone working in neuroscience and physiological data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nervous system / Diseases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State-space methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhe</subfield><subfield code="d">1976-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-07919-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139941433</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349136</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139941433</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139941433</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940166 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781139941433 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349136 |
oclc_num | 992910348 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxii, 374 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Advanced state space methods for neural and clinical data edited by Zhe Chen Advanced State Space Methods for Neural & Clinical Data Cambridge Cambridge University Press 2015 1 online resource (xxii, 374 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Inference and learning in latent Markov models / D. Barber and S. Chiappa -- State space methods for MEG source reconstruction / M. Fukushima, O. Yamashita, and M. Sato -- Autoregressive modeling of FMRI time series : state space approaches and the general linear model / A. Galka [and others] -- State space models and their spectral decomposition in dynamic causal modeling / R. Moran -- Estimating state and parameters in state space models of spike trains / J.H. Macke, L. Buesing, and M. Sahani -- Bayesian inference for latent stepping and ramping models of spike train data / K.W. Latimer, A.C. Huk, and J.W. Pillow -- Probabilistic approaches to uncover rat hippocampal population codes / Z. Chen, F. Kloosterman, and M.A. Wilson -- Neural decoding in motor cortex using state space models with hidden states / W. Wuand S. Liu -- State-space modeling for analysis of behavior in learning experiments / A.C. Smith -- Bayesian nonparametric learning of switching dynamics in cohort physiological time series : application in critical care patient monitoring / L.H. Lehman, M.J. Johnson, S. Nemati, R.P. Adams and R.G. Mark -- Identifying outcome-discriminative dynamics in multivariate physiological cohort time series / S. Nemati and R.P. Adams -- A dynamic point process framework for assessing heartbeat dynamics and cardiovascular functions / Z. Chen and R. Barbieri -- Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression / M.B. Westover, S. Ching, M.M. Shafi, S.S. Cash and E.N. Brown -- Signal quality indices for state-space electrophysiological signal processing and vice versa / J. Oster and G.D. Clifford This authoritative work provides an in-depth treatment of state space methods, with a range of applications in neural and clinical data. Advanced and state-of-the-art research topics are detailed, including topics in state space analyses, maximum likelihood methods, variational Bayes, sequential Monte Carlo, Markov chain Monte Carlo, nonparametric Bayesian, and deep learning methods. Details are provided on practical applications in neural and clinical data, whether this is characterising time series data from neural spike trains recorded from the rat hippocampus, the primate motor cortex, or the human EEG, MEG or fMRI, or physiological measurements of heartbeats or blood pressures. With real-world case studies of neuroscience experiments and clinical data sets, and written by expert authors from across the field, this is an ideal resource for anyone working in neuroscience and physiological data analysis Nervous system / Diseases State-space methods Chen, Zhe 1976- edt Erscheint auch als Druckausgabe 978-1-107-07919-9 https://doi.org/10.1017/CBO9781139941433 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Advanced state space methods for neural and clinical data Inference and learning in latent Markov models / D. Barber and S. Chiappa -- State space methods for MEG source reconstruction / M. Fukushima, O. Yamashita, and M. Sato -- Autoregressive modeling of FMRI time series : state space approaches and the general linear model / A. Galka [and others] -- State space models and their spectral decomposition in dynamic causal modeling / R. Moran -- Estimating state and parameters in state space models of spike trains / J.H. Macke, L. Buesing, and M. Sahani -- Bayesian inference for latent stepping and ramping models of spike train data / K.W. Latimer, A.C. Huk, and J.W. Pillow -- Probabilistic approaches to uncover rat hippocampal population codes / Z. Chen, F. Kloosterman, and M.A. Wilson -- Neural decoding in motor cortex using state space models with hidden states / W. Wuand S. Liu -- State-space modeling for analysis of behavior in learning experiments / A.C. Smith -- Bayesian nonparametric learning of switching dynamics in cohort physiological time series : application in critical care patient monitoring / L.H. Lehman, M.J. Johnson, S. Nemati, R.P. Adams and R.G. Mark -- Identifying outcome-discriminative dynamics in multivariate physiological cohort time series / S. Nemati and R.P. Adams -- A dynamic point process framework for assessing heartbeat dynamics and cardiovascular functions / Z. Chen and R. Barbieri -- Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression / M.B. Westover, S. Ching, M.M. Shafi, S.S. Cash and E.N. Brown -- Signal quality indices for state-space electrophysiological signal processing and vice versa / J. Oster and G.D. Clifford Nervous system / Diseases State-space methods |
title | Advanced state space methods for neural and clinical data |
title_alt | Advanced State Space Methods for Neural & Clinical Data |
title_auth | Advanced state space methods for neural and clinical data |
title_exact_search | Advanced state space methods for neural and clinical data |
title_full | Advanced state space methods for neural and clinical data edited by Zhe Chen |
title_fullStr | Advanced state space methods for neural and clinical data edited by Zhe Chen |
title_full_unstemmed | Advanced state space methods for neural and clinical data edited by Zhe Chen |
title_short | Advanced state space methods for neural and clinical data |
title_sort | advanced state space methods for neural and clinical data |
topic | Nervous system / Diseases State-space methods |
topic_facet | Nervous system / Diseases State-space methods |
url | https://doi.org/10.1017/CBO9781139941433 |
work_keys_str_mv | AT chenzhe advancedstatespacemethodsforneuralandclinicaldata AT chenzhe advancedstatespacemethodsforneuralclinicaldata |