Introduction to group characters:
To an algebraist the theory of group characters presents one of those fascinating situations, where the structure of an abstract system is elucidated by a unique set of numbers inherent in the system. But the subject also has a practical aspect, since group characters have gained importance in sever...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | To an algebraist the theory of group characters presents one of those fascinating situations, where the structure of an abstract system is elucidated by a unique set of numbers inherent in the system. But the subject also has a practical aspect, since group characters have gained importance in several branches of science, in which considerations of symmetry play a decisive part. This is an introductory text, suitable for final-year undergraduates or postgraduate students. The only prerequisites are a standard knowledge of linear algebra and a modest acquaintance with group theory. Especial care has been taken to explain how group characters are computed. The character tables of most of the familiar accessible groups are either constructed in the text or included amongst the exercise, all of which are supplied with solutions. The chapter on permutation groups contains a detailed account of the characters of the symmetric group based on the generating function of Frobenius and on the Schur functions. The exposition has been made self-sufficient by the inclusion of auxiliary material on skew-symmetric polynomials, determinants and symmetric functions |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 227 pages) |
ISBN: | 9780511565755 |
DOI: | 10.1017/CBO9780511565755 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940154 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9780511565755 |c Online |9 978-0-511-56575-5 | ||
024 | 7 | |a 10.1017/CBO9780511565755 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511565755 | ||
035 | |a (OCoLC)890765462 | ||
035 | |a (DE-599)BVBBV043940154 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.22 |2 19eng | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Ledermann, Walter |d 1911-2009 |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to group characters |c Walter Ledermann |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (x, 227 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Group representations -- Elementary properties of group characters -- Induced characters -- Permutation groups -- Group-theoretical applications -- Arithmetic properties of group characters -- Real representations -- Appendix: A generalisation of Vandermonde's determinant -- The alternant quotient -- Jacobi's theorem on inverse matrices -- Quadratic forms -- Congruence relations in an algebraic number field | |
520 | |a To an algebraist the theory of group characters presents one of those fascinating situations, where the structure of an abstract system is elucidated by a unique set of numbers inherent in the system. But the subject also has a practical aspect, since group characters have gained importance in several branches of science, in which considerations of symmetry play a decisive part. This is an introductory text, suitable for final-year undergraduates or postgraduate students. The only prerequisites are a standard knowledge of linear algebra and a modest acquaintance with group theory. Especial care has been taken to explain how group characters are computed. The character tables of most of the familiar accessible groups are either constructed in the text or included amongst the exercise, all of which are supplied with solutions. The chapter on permutation groups contains a detailed account of the characters of the symmetric group based on the generating function of Frobenius and on the Schur functions. The exposition has been made self-sufficient by the inclusion of auxiliary material on skew-symmetric polynomials, determinants and symmetric functions | ||
650 | 4 | |a Characters of groups | |
650 | 0 | 7 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33246-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33781-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511565755 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349124 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511565755 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511565755 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880231776256 |
---|---|
any_adam_object | |
author | Ledermann, Walter 1911-2009 |
author_facet | Ledermann, Walter 1911-2009 |
author_role | aut |
author_sort | Ledermann, Walter 1911-2009 |
author_variant | w l wl |
building | Verbundindex |
bvnumber | BV043940154 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
contents | Group representations -- Elementary properties of group characters -- Induced characters -- Permutation groups -- Group-theoretical applications -- Arithmetic properties of group characters -- Real representations -- Appendix: A generalisation of Vandermonde's determinant -- The alternant quotient -- Jacobi's theorem on inverse matrices -- Quadratic forms -- Congruence relations in an algebraic number field |
ctrlnum | (ZDB-20-CBO)CR9780511565755 (OCoLC)890765462 (DE-599)BVBBV043940154 |
dewey-full | 512/.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.22 |
dewey-search | 512/.22 |
dewey-sort | 3512 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511565755 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03666nmm a2200529zc 4500</leader><controlfield tag="001">BV043940154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565755</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56575-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511565755</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511565755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890765462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.22</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ledermann, Walter</subfield><subfield code="d">1911-2009</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to group characters</subfield><subfield code="c">Walter Ledermann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 227 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Group representations -- Elementary properties of group characters -- Induced characters -- Permutation groups -- Group-theoretical applications -- Arithmetic properties of group characters -- Real representations -- Appendix: A generalisation of Vandermonde's determinant -- The alternant quotient -- Jacobi's theorem on inverse matrices -- Quadratic forms -- Congruence relations in an algebraic number field</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To an algebraist the theory of group characters presents one of those fascinating situations, where the structure of an abstract system is elucidated by a unique set of numbers inherent in the system. But the subject also has a practical aspect, since group characters have gained importance in several branches of science, in which considerations of symmetry play a decisive part. This is an introductory text, suitable for final-year undergraduates or postgraduate students. The only prerequisites are a standard knowledge of linear algebra and a modest acquaintance with group theory. Especial care has been taken to explain how group characters are computed. The character tables of most of the familiar accessible groups are either constructed in the text or included amongst the exercise, all of which are supplied with solutions. The chapter on permutation groups contains a detailed account of the characters of the symmetric group based on the generating function of Frobenius and on the Schur functions. The exposition has been made self-sufficient by the inclusion of auxiliary material on skew-symmetric polynomials, determinants and symmetric functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characters of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33246-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33781-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511565755</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349124</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565755</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565755</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940154 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9780511565755 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349124 |
oclc_num | 890765462 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 227 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Ledermann, Walter 1911-2009 Verfasser aut Introduction to group characters Walter Ledermann Second edition Cambridge Cambridge University Press 1987 1 online resource (x, 227 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Group representations -- Elementary properties of group characters -- Induced characters -- Permutation groups -- Group-theoretical applications -- Arithmetic properties of group characters -- Real representations -- Appendix: A generalisation of Vandermonde's determinant -- The alternant quotient -- Jacobi's theorem on inverse matrices -- Quadratic forms -- Congruence relations in an algebraic number field To an algebraist the theory of group characters presents one of those fascinating situations, where the structure of an abstract system is elucidated by a unique set of numbers inherent in the system. But the subject also has a practical aspect, since group characters have gained importance in several branches of science, in which considerations of symmetry play a decisive part. This is an introductory text, suitable for final-year undergraduates or postgraduate students. The only prerequisites are a standard knowledge of linear algebra and a modest acquaintance with group theory. Especial care has been taken to explain how group characters are computed. The character tables of most of the familiar accessible groups are either constructed in the text or included amongst the exercise, all of which are supplied with solutions. The chapter on permutation groups contains a detailed account of the characters of the symmetric group based on the generating function of Frobenius and on the Schur functions. The exposition has been made self-sufficient by the inclusion of auxiliary material on skew-symmetric polynomials, determinants and symmetric functions Characters of groups Charakter Gruppentheorie (DE-588)4158438-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Charakter Gruppentheorie (DE-588)4158438-7 s 1\p DE-604 Gruppentheorie (DE-588)4072157-7 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-33246-0 Erscheint auch als Druckausgabe 978-0-521-33781-6 https://doi.org/10.1017/CBO9780511565755 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ledermann, Walter 1911-2009 Introduction to group characters Group representations -- Elementary properties of group characters -- Induced characters -- Permutation groups -- Group-theoretical applications -- Arithmetic properties of group characters -- Real representations -- Appendix: A generalisation of Vandermonde's determinant -- The alternant quotient -- Jacobi's theorem on inverse matrices -- Quadratic forms -- Congruence relations in an algebraic number field Characters of groups Charakter Gruppentheorie (DE-588)4158438-7 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4158438-7 (DE-588)4072157-7 |
title | Introduction to group characters |
title_auth | Introduction to group characters |
title_exact_search | Introduction to group characters |
title_full | Introduction to group characters Walter Ledermann |
title_fullStr | Introduction to group characters Walter Ledermann |
title_full_unstemmed | Introduction to group characters Walter Ledermann |
title_short | Introduction to group characters |
title_sort | introduction to group characters |
topic | Characters of groups Charakter Gruppentheorie (DE-588)4158438-7 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Characters of groups Charakter Gruppentheorie Gruppentheorie |
url | https://doi.org/10.1017/CBO9780511565755 |
work_keys_str_mv | AT ledermannwalter introductiontogroupcharacters |