Groups, a path to geometry:
This book follows the same successful approach as Dr Burn's previous book on number theory. It consists of a carefully constructed sequence of questions which will enable the reader, through his or her own participation, to generate all the group theory covered by a conventional first universit...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1985
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book follows the same successful approach as Dr Burn's previous book on number theory. It consists of a carefully constructed sequence of questions which will enable the reader, through his or her own participation, to generate all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationship to three-dimensional isometries are covered, and the climax of the book is a study of crystallographic groups, with a complete analysis of these groups in two dimensions |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 242 pages) |
ISBN: | 9781139163590 |
DOI: | 10.1017/CBO9781139163590 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940152 | ||
003 | DE-604 | ||
005 | 20200218 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781139163590 |9 978-1-139-16359-0 | ||
024 | 7 | |a 10.1017/CBO9781139163590 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139163590 | ||
035 | |a (OCoLC)859645260 | ||
035 | |a (DE-599)BVBBV043940152 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.22 |2 19eng | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SM 100 |0 (DE-625)143280: |2 rvk | ||
100 | 1 | |a Burn, R. P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Groups, a path to geometry |c R.P. Burn |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1985 | |
300 | |a 1 online resource (xii, 242 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book follows the same successful approach as Dr Burn's previous book on number theory. It consists of a carefully constructed sequence of questions which will enable the reader, through his or her own participation, to generate all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationship to three-dimensional isometries are covered, and the climax of the book is a study of crystallographic groups, with a complete analysis of these groups in two dimensions | ||
650 | 4 | |a Group theory | |
650 | 4 | |a Transformation groups | |
650 | 4 | |a Geometry | |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-30037-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-34793-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139163590 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349122 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139163590 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139163590 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880238067712 |
---|---|
any_adam_object | |
author | Burn, R. P. |
author_facet | Burn, R. P. |
author_role | aut |
author_sort | Burn, R. P. |
author_variant | r p b rp rpb |
building | Verbundindex |
bvnumber | BV043940152 |
classification_rvk | SK 260 SM 100 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139163590 (OCoLC)859645260 (DE-599)BVBBV043940152 |
dewey-full | 512/.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.22 |
dewey-search | 512/.22 |
dewey-sort | 3512 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139163590 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02574nmm a2200493zc 4500</leader><controlfield tag="001">BV043940152</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139163590</subfield><subfield code="9">978-1-139-16359-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139163590</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139163590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859645260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.22</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SM 100</subfield><subfield code="0">(DE-625)143280:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burn, R. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups, a path to geometry</subfield><subfield code="c">R.P. Burn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 242 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book follows the same successful approach as Dr Burn's previous book on number theory. It consists of a carefully constructed sequence of questions which will enable the reader, through his or her own participation, to generate all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationship to three-dimensional isometries are covered, and the climax of the book is a study of crystallographic groups, with a complete analysis of these groups in two dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformation groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-30037-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-34793-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139163590</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349122</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139163590</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139163590</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940152 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781139163590 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349122 |
oclc_num | 859645260 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 242 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Burn, R. P. Verfasser aut Groups, a path to geometry R.P. Burn Cambridge Cambridge University Press 1985 1 online resource (xii, 242 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book follows the same successful approach as Dr Burn's previous book on number theory. It consists of a carefully constructed sequence of questions which will enable the reader, through his or her own participation, to generate all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationship to three-dimensional isometries are covered, and the climax of the book is a study of crystallographic groups, with a complete analysis of these groups in two dimensions Group theory Transformation groups Geometry Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-30037-7 Erscheint auch als Druck-Ausgabe 978-0-521-34793-8 https://doi.org/10.1017/CBO9781139163590 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Burn, R. P. Groups, a path to geometry Group theory Transformation groups Geometry Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4072157-7 |
title | Groups, a path to geometry |
title_auth | Groups, a path to geometry |
title_exact_search | Groups, a path to geometry |
title_full | Groups, a path to geometry R.P. Burn |
title_fullStr | Groups, a path to geometry R.P. Burn |
title_full_unstemmed | Groups, a path to geometry R.P. Burn |
title_short | Groups, a path to geometry |
title_sort | groups a path to geometry |
topic | Group theory Transformation groups Geometry Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Group theory Transformation groups Geometry Gruppentheorie |
url | https://doi.org/10.1017/CBO9781139163590 |
work_keys_str_mv | AT burnrp groupsapathtogeometry |