Ordered permutation groups:
As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1981
|
Schriftenreihe: | London Mathematical Society lecture note series
55 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xlix, 266 pages) |
ISBN: | 9780511721243 |
DOI: | 10.1017/CBO9780511721243 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940141 | ||
003 | DE-604 | ||
005 | 20200713 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1981 |||| o||u| ||||||eng d | ||
020 | |a 9780511721243 |c Online |9 978-0-511-72124-3 | ||
024 | 7 | |a 10.1017/CBO9780511721243 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721243 | ||
035 | |a (OCoLC)891430616 | ||
035 | |a (DE-599)BVBBV043940141 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Glass, A. M. W. |d 1944- |e Verfasser |0 (DE-588)172099129 |4 aut | |
245 | 1 | 0 | |a Ordered permutation groups |c A.M.W. Glass |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1981 | |
300 | |a 1 online resource (xlix, 266 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 55 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals | ||
650 | 4 | |a Permutation groups | |
650 | 4 | |a Ordered groups | |
650 | 0 | 7 | |a Permutationsgruppe |0 (DE-588)4173833-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Permutationsgruppe |0 (DE-588)4173833-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-24190-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721243 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349111 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721243 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721243 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880213950464 |
---|---|
any_adam_object | |
author | Glass, A. M. W. 1944- |
author_GND | (DE-588)172099129 |
author_facet | Glass, A. M. W. 1944- |
author_role | aut |
author_sort | Glass, A. M. W. 1944- |
author_variant | a m w g amw amwg |
building | Verbundindex |
bvnumber | BV043940141 |
classification_rvk | SI 320 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511721243 (OCoLC)891430616 (DE-599)BVBBV043940141 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721243 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02939nmm a2200481zcb4500</leader><controlfield tag="001">BV043940141</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200713 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721243</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72124-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721243</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891430616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940141</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glass, A. M. W.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172099129</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ordered permutation groups</subfield><subfield code="c">A.M.W. Glass</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xlix, 266 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">55</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-24190-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721243</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349111</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721243</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721243</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940141 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9780511721243 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349111 |
oclc_num | 891430616 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xlix, 266 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Glass, A. M. W. 1944- Verfasser (DE-588)172099129 aut Ordered permutation groups A.M.W. Glass Cambridge Cambridge University Press 1981 1 online resource (xlix, 266 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 55 Title from publisher's bibliographic system (viewed on 05 Oct 2015) As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals Permutation groups Ordered groups Permutationsgruppe (DE-588)4173833-0 gnd rswk-swf Permutationsgruppe (DE-588)4173833-0 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-24190-8 https://doi.org/10.1017/CBO9780511721243 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Glass, A. M. W. 1944- Ordered permutation groups Permutation groups Ordered groups Permutationsgruppe (DE-588)4173833-0 gnd |
subject_GND | (DE-588)4173833-0 |
title | Ordered permutation groups |
title_auth | Ordered permutation groups |
title_exact_search | Ordered permutation groups |
title_full | Ordered permutation groups A.M.W. Glass |
title_fullStr | Ordered permutation groups A.M.W. Glass |
title_full_unstemmed | Ordered permutation groups A.M.W. Glass |
title_short | Ordered permutation groups |
title_sort | ordered permutation groups |
topic | Permutation groups Ordered groups Permutationsgruppe (DE-588)4173833-0 gnd |
topic_facet | Permutation groups Ordered groups Permutationsgruppe |
url | https://doi.org/10.1017/CBO9780511721243 |
work_keys_str_mv | AT glassamw orderedpermutationgroups |