Semimodular lattices: theory and applications
In Semimodular Lattices: Theory and Applications Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applicat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1999
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 73 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | In Semimodular Lattices: Theory and Applications Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The book surveys and analyzes Garrett Birkhoff's concept of semimodularity and the various related concepts in lattice theory, and it presents theoretical results as well as applications in discrete mathematics group theory and universal algebra. The author also deals with lattices that are 'close' to semimodularity or can be combined with semimodularity, e.g. supersolvable, admissible, consistent, strong, and balanced lattices. Researchers in lattice theory, discrete mathematics, combinatorics, and algebra will find this book invaluable |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 370 pages) |
ISBN: | 9780511665578 |
DOI: | 10.1017/CBO9780511665578 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940140 | ||
003 | DE-604 | ||
005 | 20170705 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1999 |||| o||u| ||||||eng d | ||
020 | |a 9780511665578 |c Online |9 978-0-511-66557-8 | ||
024 | 7 | |a 10.1017/CBO9780511665578 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511665578 | ||
035 | |a (OCoLC)849877071 | ||
035 | |a (DE-599)BVBBV043940140 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3/3 |2 21 | |
100 | 1 | |a Stern, Manfred |d 1946-2018 |e Verfasser |0 (DE-588)143508350 |4 aut | |
245 | 1 | 0 | |a Semimodular lattices |b theory and applications |c Manfred Stern |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1999 | |
300 | |a 1 online resource (xiv, 370 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 73 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g 1 |t From Boolean Algebras to Semimodular Lattices |g 2 |t M-Symmetric Lattices |g 3 |t Conditions Related to Semimodularity, 0-Conditions, and Disjointness Properties |g 4 |t Supersolvable and Admissible Lattices; Consistent and Strong Lattices |g 5 |t The Covering Graph |g 6 |t Semimodular Lattices of Finite Length |g 7 |t Local Distributivity |g 8 |t Local Modularity |g 9 |t Congruence Semimodularity |
520 | |a In Semimodular Lattices: Theory and Applications Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The book surveys and analyzes Garrett Birkhoff's concept of semimodularity and the various related concepts in lattice theory, and it presents theoretical results as well as applications in discrete mathematics group theory and universal algebra. The author also deals with lattices that are 'close' to semimodularity or can be combined with semimodularity, e.g. supersolvable, admissible, consistent, strong, and balanced lattices. Researchers in lattice theory, discrete mathematics, combinatorics, and algebra will find this book invaluable | ||
650 | 4 | |a Semimodular lattices | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-11884-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-46105-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511665578 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349110 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511665578 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511665578 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880208707584 |
---|---|
any_adam_object | |
author | Stern, Manfred 1946-2018 |
author_GND | (DE-588)143508350 |
author_facet | Stern, Manfred 1946-2018 |
author_role | aut |
author_sort | Stern, Manfred 1946-2018 |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV043940140 |
collection | ZDB-20-CBO |
contents | From Boolean Algebras to Semimodular Lattices M-Symmetric Lattices Conditions Related to Semimodularity, 0-Conditions, and Disjointness Properties Supersolvable and Admissible Lattices; Consistent and Strong Lattices The Covering Graph Semimodular Lattices of Finite Length Local Distributivity Local Modularity Congruence Semimodularity |
ctrlnum | (ZDB-20-CBO)CR9780511665578 (OCoLC)849877071 (DE-599)BVBBV043940140 |
dewey-full | 511.3/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/3 |
dewey-search | 511.3/3 |
dewey-sort | 3511.3 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511665578 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02903nmm a2200421zcb4500</leader><controlfield tag="001">BV043940140</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170705 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511665578</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66557-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511665578</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511665578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849877071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stern, Manfred</subfield><subfield code="d">1946-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143508350</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semimodular lattices</subfield><subfield code="b">theory and applications</subfield><subfield code="c">Manfred Stern</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 370 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 73</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">1</subfield><subfield code="t">From Boolean Algebras to Semimodular Lattices</subfield><subfield code="g">2</subfield><subfield code="t">M-Symmetric Lattices</subfield><subfield code="g">3</subfield><subfield code="t">Conditions Related to Semimodularity, 0-Conditions, and Disjointness Properties</subfield><subfield code="g">4</subfield><subfield code="t">Supersolvable and Admissible Lattices; Consistent and Strong Lattices</subfield><subfield code="g">5</subfield><subfield code="t">The Covering Graph</subfield><subfield code="g">6</subfield><subfield code="t">Semimodular Lattices of Finite Length</subfield><subfield code="g">7</subfield><subfield code="t">Local Distributivity</subfield><subfield code="g">8</subfield><subfield code="t">Local Modularity</subfield><subfield code="g">9</subfield><subfield code="t">Congruence Semimodularity</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In Semimodular Lattices: Theory and Applications Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The book surveys and analyzes Garrett Birkhoff's concept of semimodularity and the various related concepts in lattice theory, and it presents theoretical results as well as applications in discrete mathematics group theory and universal algebra. The author also deals with lattices that are 'close' to semimodularity or can be combined with semimodularity, e.g. supersolvable, admissible, consistent, strong, and balanced lattices. Researchers in lattice theory, discrete mathematics, combinatorics, and algebra will find this book invaluable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semimodular lattices</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-11884-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-46105-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511665578</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349110</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511665578</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511665578</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940140 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9780511665578 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349110 |
oclc_num | 849877071 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 370 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Stern, Manfred 1946-2018 Verfasser (DE-588)143508350 aut Semimodular lattices theory and applications Manfred Stern Cambridge Cambridge University Press 1999 1 online resource (xiv, 370 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 73 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1 From Boolean Algebras to Semimodular Lattices 2 M-Symmetric Lattices 3 Conditions Related to Semimodularity, 0-Conditions, and Disjointness Properties 4 Supersolvable and Admissible Lattices; Consistent and Strong Lattices 5 The Covering Graph 6 Semimodular Lattices of Finite Length 7 Local Distributivity 8 Local Modularity 9 Congruence Semimodularity In Semimodular Lattices: Theory and Applications Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The book surveys and analyzes Garrett Birkhoff's concept of semimodularity and the various related concepts in lattice theory, and it presents theoretical results as well as applications in discrete mathematics group theory and universal algebra. The author also deals with lattices that are 'close' to semimodularity or can be combined with semimodularity, e.g. supersolvable, admissible, consistent, strong, and balanced lattices. Researchers in lattice theory, discrete mathematics, combinatorics, and algebra will find this book invaluable Semimodular lattices Erscheint auch als Druckausgabe 978-0-521-11884-2 Erscheint auch als Druckausgabe 978-0-521-46105-4 https://doi.org/10.1017/CBO9780511665578 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Stern, Manfred 1946-2018 Semimodular lattices theory and applications From Boolean Algebras to Semimodular Lattices M-Symmetric Lattices Conditions Related to Semimodularity, 0-Conditions, and Disjointness Properties Supersolvable and Admissible Lattices; Consistent and Strong Lattices The Covering Graph Semimodular Lattices of Finite Length Local Distributivity Local Modularity Congruence Semimodularity Semimodular lattices |
title | Semimodular lattices theory and applications |
title_alt | From Boolean Algebras to Semimodular Lattices M-Symmetric Lattices Conditions Related to Semimodularity, 0-Conditions, and Disjointness Properties Supersolvable and Admissible Lattices; Consistent and Strong Lattices The Covering Graph Semimodular Lattices of Finite Length Local Distributivity Local Modularity Congruence Semimodularity |
title_auth | Semimodular lattices theory and applications |
title_exact_search | Semimodular lattices theory and applications |
title_full | Semimodular lattices theory and applications Manfred Stern |
title_fullStr | Semimodular lattices theory and applications Manfred Stern |
title_full_unstemmed | Semimodular lattices theory and applications Manfred Stern |
title_short | Semimodular lattices |
title_sort | semimodular lattices theory and applications |
title_sub | theory and applications |
topic | Semimodular lattices |
topic_facet | Semimodular lattices |
url | https://doi.org/10.1017/CBO9780511665578 |
work_keys_str_mv | AT sternmanfred semimodularlatticestheoryandapplications |