Representations of general linear groups:
The most important examples of finite groups are the group of permutations of a set of n objects, known as the symmetric group, and the group of non-singular n-by-n matrices over a finite field, which is called the general linear group. This book examines the representation theory of the general lin...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1984
|
Schriftenreihe: | London Mathematical Society lecture note series
94 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The most important examples of finite groups are the group of permutations of a set of n objects, known as the symmetric group, and the group of non-singular n-by-n matrices over a finite field, which is called the general linear group. This book examines the representation theory of the general linear groups, and reveals that there is a close analogy with that of the symmetric groups. It consists of an essay which was joint winner of the Cambridge University Adams Prize 1981-2, and is intended to be accessible to mathematicians with no previous specialist knowledge of the topics involved. Many people have studied the representations of general linear groups over fields of the natural characteristic, but this volume explores new territory by considering the case where the characteristic of the ground field is not the natural one. Not only are the results in the book elegant and interesting in their own right, but they suggest many lines for further investigation |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 147 pages) |
ISBN: | 9780511661921 |
DOI: | 10.1017/CBO9780511661921 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940138 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1984 |||| o||u| ||||||eng d | ||
020 | |a 9780511661921 |c Online |9 978-0-511-66192-1 | ||
024 | 7 | |a 10.1017/CBO9780511661921 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511661921 | ||
035 | |a (OCoLC)849794197 | ||
035 | |a (DE-599)BVBBV043940138 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a James, G. D. |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representations of general linear groups |c G.D. James |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1984 | |
300 | |a 1 online resource (xii, 147 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 94 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The most important examples of finite groups are the group of permutations of a set of n objects, known as the symmetric group, and the group of non-singular n-by-n matrices over a finite field, which is called the general linear group. This book examines the representation theory of the general linear groups, and reveals that there is a close analogy with that of the symmetric groups. It consists of an essay which was joint winner of the Cambridge University Adams Prize 1981-2, and is intended to be accessible to mathematicians with no previous specialist knowledge of the topics involved. Many people have studied the representations of general linear groups over fields of the natural characteristic, but this volume explores new territory by considering the case where the characteristic of the ground field is not the natural one. Not only are the results in the book elegant and interesting in their own right, but they suggest many lines for further investigation | ||
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Lineare Gruppe |0 (DE-588)4138778-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Gruppe |0 (DE-588)4138778-8 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-26981-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511661921 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349108 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511661921 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511661921 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880204513280 |
---|---|
any_adam_object | |
author | James, G. D. 1945- |
author_facet | James, G. D. 1945- |
author_role | aut |
author_sort | James, G. D. 1945- |
author_variant | g d j gd gdj |
building | Verbundindex |
bvnumber | BV043940138 |
classification_rvk | SI 320 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511661921 (OCoLC)849794197 (DE-599)BVBBV043940138 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511661921 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02937nmm a2200493zcb4500</leader><controlfield tag="001">BV043940138</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661921</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66192-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511661921</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511661921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849794197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940138</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">James, G. D.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of general linear groups</subfield><subfield code="c">G.D. James</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 147 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">94</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most important examples of finite groups are the group of permutations of a set of n objects, known as the symmetric group, and the group of non-singular n-by-n matrices over a finite field, which is called the general linear group. This book examines the representation theory of the general linear groups, and reveals that there is a close analogy with that of the symmetric groups. It consists of an essay which was joint winner of the Cambridge University Adams Prize 1981-2, and is intended to be accessible to mathematicians with no previous specialist knowledge of the topics involved. Many people have studied the representations of general linear groups over fields of the natural characteristic, but this volume explores new territory by considering the case where the characteristic of the ground field is not the natural one. Not only are the results in the book elegant and interesting in their own right, but they suggest many lines for further investigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-26981-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511661921</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349108</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661921</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661921</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940138 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9780511661921 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349108 |
oclc_num | 849794197 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 147 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | James, G. D. 1945- Verfasser aut Representations of general linear groups G.D. James Cambridge Cambridge University Press 1984 1 online resource (xii, 147 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 94 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The most important examples of finite groups are the group of permutations of a set of n objects, known as the symmetric group, and the group of non-singular n-by-n matrices over a finite field, which is called the general linear group. This book examines the representation theory of the general linear groups, and reveals that there is a close analogy with that of the symmetric groups. It consists of an essay which was joint winner of the Cambridge University Adams Prize 1981-2, and is intended to be accessible to mathematicians with no previous specialist knowledge of the topics involved. Many people have studied the representations of general linear groups over fields of the natural characteristic, but this volume explores new territory by considering the case where the characteristic of the ground field is not the natural one. Not only are the results in the book elegant and interesting in their own right, but they suggest many lines for further investigation Representations of groups Lineare Gruppe (DE-588)4138778-8 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lineare Gruppe (DE-588)4138778-8 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-26981-0 https://doi.org/10.1017/CBO9780511661921 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | James, G. D. 1945- Representations of general linear groups Representations of groups Lineare Gruppe (DE-588)4138778-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4138778-8 (DE-588)4148816-7 |
title | Representations of general linear groups |
title_auth | Representations of general linear groups |
title_exact_search | Representations of general linear groups |
title_full | Representations of general linear groups G.D. James |
title_fullStr | Representations of general linear groups G.D. James |
title_full_unstemmed | Representations of general linear groups G.D. James |
title_short | Representations of general linear groups |
title_sort | representations of general linear groups |
topic | Representations of groups Lineare Gruppe (DE-588)4138778-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Representations of groups Lineare Gruppe Darstellungstheorie |
url | https://doi.org/10.1017/CBO9780511661921 |
work_keys_str_mv | AT jamesgd representationsofgenerallineargroups |