Combinatorial group theory: a topological approach
In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1989
|
Schriftenreihe: | London Mathematical Society student texts
14 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory |
Beschreibung: | 1 Online-Ressource (x, 310 Seiten) |
ISBN: | 9780511565878 |
DOI: | 10.1017/CBO9780511565878 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940133 | ||
003 | DE-604 | ||
005 | 20190524 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1989 |||| o||u| ||||||eng d | ||
020 | |a 9780511565878 |c Online |9 978-0-511-56587-8 | ||
024 | 7 | |a 10.1017/CBO9780511565878 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511565878 | ||
035 | |a (OCoLC)967599544 | ||
035 | |a (DE-599)BVBBV043940133 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.2 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SU 400 |0 (DE-625)143694: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Cohen, Daniel E. |d 1934- |e Verfasser |0 (DE-588)1029543038 |4 aut | |
245 | 1 | 0 | |a Combinatorial group theory |b a topological approach |c Daniel E. Cohen |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1989 | |
300 | |a 1 Online-Ressource (x, 310 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 14 | |
520 | |a In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory | ||
650 | 4 | |a Combinatorial group theory | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Kombinatorische Gruppentheorie |0 (DE-588)4219556-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Gruppe |0 (DE-588)4135793-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Gruppentheorie |0 (DE-588)4219556-1 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Topologische Gruppe |0 (DE-588)4135793-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 2 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-34133-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-34936-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511565878 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349103 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511565878 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511565878 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511565878 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880187736064 |
---|---|
any_adam_object | |
author | Cohen, Daniel E. 1934- |
author_GND | (DE-588)1029543038 |
author_facet | Cohen, Daniel E. 1934- |
author_role | aut |
author_sort | Cohen, Daniel E. 1934- |
author_variant | d e c de dec |
building | Verbundindex |
bvnumber | BV043940133 |
classification_rvk | SK 340 SK 260 SU 400 SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511565878 (OCoLC)967599544 (DE-599)BVBBV043940133 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
doi_str_mv | 10.1017/CBO9780511565878 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03604nmm a2200685zcb4500</leader><controlfield tag="001">BV043940133</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190524 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565878</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56587-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511565878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511565878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967599544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SU 400</subfield><subfield code="0">(DE-625)143694:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Daniel E.</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1029543038</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial group theory</subfield><subfield code="b">a topological approach</subfield><subfield code="c">Daniel E. Cohen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 310 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">14</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Gruppentheorie</subfield><subfield code="0">(DE-588)4219556-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Gruppentheorie</subfield><subfield code="0">(DE-588)4219556-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-34133-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-34936-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511565878</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349103</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565878</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565878</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565878</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940133 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9780511565878 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349103 |
oclc_num | 967599544 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (x, 310 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Cohen, Daniel E. 1934- Verfasser (DE-588)1029543038 aut Combinatorial group theory a topological approach Daniel E. Cohen Cambridge Cambridge University Press 1989 1 Online-Ressource (x, 310 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 14 In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory Combinatorial group theory Topology Kombinatorische Gruppentheorie (DE-588)4219556-1 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Topologische Gruppe (DE-588)4135793-0 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Kombinatorische Gruppentheorie (DE-588)4219556-1 s Topologie (DE-588)4060425-1 s DE-604 Topologische Gruppe (DE-588)4135793-0 s Gruppentheorie (DE-588)4072157-7 s Mathematik (DE-588)4037944-9 s 1\p DE-604 Kombinatorik (DE-588)4031824-2 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-34133-2 Erscheint auch als Druck-Ausgabe 978-0-521-34936-9 https://doi.org/10.1017/CBO9780511565878 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohen, Daniel E. 1934- Combinatorial group theory a topological approach Combinatorial group theory Topology Kombinatorische Gruppentheorie (DE-588)4219556-1 gnd Topologie (DE-588)4060425-1 gnd Topologische Gruppe (DE-588)4135793-0 gnd Kombinatorik (DE-588)4031824-2 gnd Mathematik (DE-588)4037944-9 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4219556-1 (DE-588)4060425-1 (DE-588)4135793-0 (DE-588)4031824-2 (DE-588)4037944-9 (DE-588)4072157-7 |
title | Combinatorial group theory a topological approach |
title_auth | Combinatorial group theory a topological approach |
title_exact_search | Combinatorial group theory a topological approach |
title_full | Combinatorial group theory a topological approach Daniel E. Cohen |
title_fullStr | Combinatorial group theory a topological approach Daniel E. Cohen |
title_full_unstemmed | Combinatorial group theory a topological approach Daniel E. Cohen |
title_short | Combinatorial group theory |
title_sort | combinatorial group theory a topological approach |
title_sub | a topological approach |
topic | Combinatorial group theory Topology Kombinatorische Gruppentheorie (DE-588)4219556-1 gnd Topologie (DE-588)4060425-1 gnd Topologische Gruppe (DE-588)4135793-0 gnd Kombinatorik (DE-588)4031824-2 gnd Mathematik (DE-588)4037944-9 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Combinatorial group theory Topology Kombinatorische Gruppentheorie Topologie Topologische Gruppe Kombinatorik Mathematik Gruppentheorie |
url | https://doi.org/10.1017/CBO9780511565878 |
work_keys_str_mv | AT cohendaniele combinatorialgrouptheoryatopologicalapproach |