The representation theory of the symmetric group:
The Representation Theory of the Symmetric Group provides an account of both the ordinary and modular representation theory of the symmetric groups. The range of applications of this theory is vast, varying from theoretical physics, through combinatories to the study of polynomial identity algebras;...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1984
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 16 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The Representation Theory of the Symmetric Group provides an account of both the ordinary and modular representation theory of the symmetric groups. The range of applications of this theory is vast, varying from theoretical physics, through combinatories to the study of polynomial identity algebras; and new uses are still being found |
Beschreibung: | Title from publisher's bibliographic system (viewed on 10 Dec 2015) |
Beschreibung: | 1 online resource (xxviii, 510 pages) |
ISBN: | 9781107340732 |
DOI: | 10.1017/CBO9781107340732 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940128 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1984 |||| o||u| ||||||eng d | ||
020 | |a 9781107340732 |c Online |9 978-1-107-34073-2 | ||
024 | 7 | |a 10.1017/CBO9781107340732 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107340732 | ||
035 | |a (OCoLC)967758733 | ||
035 | |a (DE-599)BVBBV043940128 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 19eng | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a James, G. D. |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The representation theory of the symmetric group |c Gordon James, Adalbert Kerber ; foreword by P.M. Cohn ; introduction by G. de B. Robinson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1984 | |
300 | |a 1 online resource (xxviii, 510 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 16 | |
500 | |a Title from publisher's bibliographic system (viewed on 10 Dec 2015) | ||
520 | |a The Representation Theory of the Symmetric Group provides an account of both the ordinary and modular representation theory of the symmetric groups. The range of applications of this theory is vast, varying from theoretical physics, through combinatories to the study of polynomial identity algebras; and new uses are still being found | ||
650 | 4 | |a Symmetry groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kerber, Adalbert |e Sonstige |4 oth | |
700 | 1 | |a Cohn, P. M. |4 aui | |
700 | 1 | |a Robinson, Gilbert de B. |d 1906-1992 |4 win | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-10412-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-30236-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107340732 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349098 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107340732 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107340732 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880185638912 |
---|---|
any_adam_object | |
author | James, G. D. 1945- |
author2 | Cohn, P. M. |
author2_role | aui |
author2_variant | p m c pm pmc |
author_facet | James, G. D. 1945- Cohn, P. M. |
author_role | aut |
author_sort | James, G. D. 1945- |
author_variant | g d j gd gdj |
building | Verbundindex |
bvnumber | BV043940128 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107340732 (OCoLC)967758733 (DE-599)BVBBV043940128 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107340732 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02600nmm a2200541zcb4500</leader><controlfield tag="001">BV043940128</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107340732</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-34073-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107340732</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107340732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967758733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">James, G. D.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The representation theory of the symmetric group</subfield><subfield code="c">Gordon James, Adalbert Kerber ; foreword by P.M. Cohn ; introduction by G. de B. Robinson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxviii, 510 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 16</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 10 Dec 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Representation Theory of the Symmetric Group provides an account of both the ordinary and modular representation theory of the symmetric groups. The range of applications of this theory is vast, varying from theoretical physics, through combinatories to the study of polynomial identity algebras; and new uses are still being found</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerber, Adalbert</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohn, P. M.</subfield><subfield code="4">aui</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Gilbert de B.</subfield><subfield code="d">1906-1992</subfield><subfield code="4">win</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-10412-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-30236-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107340732</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349098</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107340732</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107340732</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940128 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781107340732 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349098 |
oclc_num | 967758733 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxviii, 510 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | James, G. D. 1945- Verfasser aut The representation theory of the symmetric group Gordon James, Adalbert Kerber ; foreword by P.M. Cohn ; introduction by G. de B. Robinson Cambridge Cambridge University Press 1984 1 online resource (xxviii, 510 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 16 Title from publisher's bibliographic system (viewed on 10 Dec 2015) The Representation Theory of the Symmetric Group provides an account of both the ordinary and modular representation theory of the symmetric groups. The range of applications of this theory is vast, varying from theoretical physics, through combinatories to the study of polynomial identity algebras; and new uses are still being found Symmetry groups Representations of groups Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Symmetrische Gruppe (DE-588)4184204-2 gnd rswk-swf Symmetrische Gruppe (DE-588)4184204-2 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Kerber, Adalbert Sonstige oth Cohn, P. M. aui Robinson, Gilbert de B. 1906-1992 win Erscheint auch als Druckausgabe 978-0-521-10412-8 Erscheint auch als Druckausgabe 978-0-521-30236-4 https://doi.org/10.1017/CBO9781107340732 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | James, G. D. 1945- The representation theory of the symmetric group Symmetry groups Representations of groups Darstellungstheorie (DE-588)4148816-7 gnd Symmetrische Gruppe (DE-588)4184204-2 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4184204-2 |
title | The representation theory of the symmetric group |
title_auth | The representation theory of the symmetric group |
title_exact_search | The representation theory of the symmetric group |
title_full | The representation theory of the symmetric group Gordon James, Adalbert Kerber ; foreword by P.M. Cohn ; introduction by G. de B. Robinson |
title_fullStr | The representation theory of the symmetric group Gordon James, Adalbert Kerber ; foreword by P.M. Cohn ; introduction by G. de B. Robinson |
title_full_unstemmed | The representation theory of the symmetric group Gordon James, Adalbert Kerber ; foreword by P.M. Cohn ; introduction by G. de B. Robinson |
title_short | The representation theory of the symmetric group |
title_sort | the representation theory of the symmetric group |
topic | Symmetry groups Representations of groups Darstellungstheorie (DE-588)4148816-7 gnd Symmetrische Gruppe (DE-588)4184204-2 gnd |
topic_facet | Symmetry groups Representations of groups Darstellungstheorie Symmetrische Gruppe |
url | https://doi.org/10.1017/CBO9781107340732 |
work_keys_str_mv | AT jamesgd therepresentationtheoryofthesymmetricgroup AT kerberadalbert therepresentationtheoryofthesymmetricgroup AT cohnpm therepresentationtheoryofthesymmetricgroup AT robinsongilbertdeb therepresentationtheoryofthesymmetricgroup |