Discrete systems and integrability:
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Cambridge texts in applied mathematics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thorough list of references will benefit upper-level undergraduate, and beginning graduate students as well as researchers from other disciplines |
Beschreibung: | Title from publisher's bibliographic system (viewed on 06 Sep 2016) |
Beschreibung: | 1 online resource (xiii, 445 pages) |
ISBN: | 9781107337411 |
DOI: | 10.1017/CBO9781107337411 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940080 | ||
003 | DE-604 | ||
005 | 20170720 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781107337411 |c Online |9 978-1-107-33741-1 | ||
024 | 7 | |a 10.1017/CBO9781107337411 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107337411 | ||
035 | |a (OCoLC)967678444 | ||
035 | |a (DE-599)BVBBV043940080 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511/.1 |2 23 | |
100 | 1 | |a Hietarinta, J. |e Verfasser |0 (DE-588)1114428728 |4 aut | |
245 | 1 | 0 | |a Discrete systems and integrability |c J. Hietarinta, N. Joshi, F.W. Nijhoff |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xiii, 445 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics | |
500 | |a Title from publisher's bibliographic system (viewed on 06 Sep 2016) | ||
505 | 8 | |a Introduction to difference equations -- Discrete equations from transformations of continuous equations -- Integrability of PEs -- Interlude: lattice equations and numerical algorithms -- Continuum limits of lattice PE -- One-dimensional lattices and maps -- Identifying integrable difference equations -- Hirota's bilinear method -- Multi-soliton solutions and the Cauchy matrix scheme -- Similarity reductions of integrable PE's -- Discrete Painlevé equations -- Lagrangian multiform theory | |
520 | |a This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thorough list of references will benefit upper-level undergraduate, and beginning graduate students as well as researchers from other disciplines | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Mathematical physics | |
700 | 1 | |a Joshi, Nalini |e Sonstige |0 (DE-588)1114428825 |4 oth | |
700 | 1 | |a Nijhoff, Frank W. |e Sonstige |0 (DE-588)1114428884 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-04272-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-66948-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107337411 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349050 | ||
966 | e | |u https://doi.org/10.1017/CBO9781107337411 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107337411 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880075538432 |
---|---|
any_adam_object | |
author | Hietarinta, J. |
author_GND | (DE-588)1114428728 (DE-588)1114428825 (DE-588)1114428884 |
author_facet | Hietarinta, J. |
author_role | aut |
author_sort | Hietarinta, J. |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV043940080 |
collection | ZDB-20-CBO |
contents | Introduction to difference equations -- Discrete equations from transformations of continuous equations -- Integrability of PEs -- Interlude: lattice equations and numerical algorithms -- Continuum limits of lattice PE -- One-dimensional lattices and maps -- Identifying integrable difference equations -- Hirota's bilinear method -- Multi-soliton solutions and the Cauchy matrix scheme -- Similarity reductions of integrable PE's -- Discrete Painlevé equations -- Lagrangian multiform theory |
ctrlnum | (ZDB-20-CBO)CR9781107337411 (OCoLC)967678444 (DE-599)BVBBV043940080 |
dewey-full | 511/.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.1 |
dewey-search | 511/.1 |
dewey-sort | 3511 11 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107337411 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03473nmm a2200469zc 4500</leader><controlfield tag="001">BV043940080</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170720 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107337411</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-33741-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107337411</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107337411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940080</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hietarinta, J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1114428728</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete systems and integrability</subfield><subfield code="c">J. Hietarinta, N. Joshi, F.W. Nijhoff</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 445 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 06 Sep 2016)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction to difference equations -- Discrete equations from transformations of continuous equations -- Integrability of PEs -- Interlude: lattice equations and numerical algorithms -- Continuum limits of lattice PE -- One-dimensional lattices and maps -- Identifying integrable difference equations -- Hirota's bilinear method -- Multi-soliton solutions and the Cauchy matrix scheme -- Similarity reductions of integrable PE's -- Discrete Painlevé equations -- Lagrangian multiform theory</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thorough list of references will benefit upper-level undergraduate, and beginning graduate students as well as researchers from other disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joshi, Nalini</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1114428825</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nijhoff, Frank W.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1114428884</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-04272-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-66948-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107337411</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349050</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107337411</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107337411</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940080 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781107337411 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349050 |
oclc_num | 967678444 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 445 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | Hietarinta, J. Verfasser (DE-588)1114428728 aut Discrete systems and integrability J. Hietarinta, N. Joshi, F.W. Nijhoff Cambridge Cambridge University Press 2016 1 online resource (xiii, 445 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics Title from publisher's bibliographic system (viewed on 06 Sep 2016) Introduction to difference equations -- Discrete equations from transformations of continuous equations -- Integrability of PEs -- Interlude: lattice equations and numerical algorithms -- Continuum limits of lattice PE -- One-dimensional lattices and maps -- Identifying integrable difference equations -- Hirota's bilinear method -- Multi-soliton solutions and the Cauchy matrix scheme -- Similarity reductions of integrable PE's -- Discrete Painlevé equations -- Lagrangian multiform theory This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thorough list of references will benefit upper-level undergraduate, and beginning graduate students as well as researchers from other disciplines Mathematische Physik Integral equations Mathematical physics Joshi, Nalini Sonstige (DE-588)1114428825 oth Nijhoff, Frank W. Sonstige (DE-588)1114428884 oth Erscheint auch als Druckausgabe 978-1-107-04272-8 Erscheint auch als Druckausgabe 978-1-107-66948-2 https://doi.org/10.1017/CBO9781107337411 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hietarinta, J. Discrete systems and integrability Introduction to difference equations -- Discrete equations from transformations of continuous equations -- Integrability of PEs -- Interlude: lattice equations and numerical algorithms -- Continuum limits of lattice PE -- One-dimensional lattices and maps -- Identifying integrable difference equations -- Hirota's bilinear method -- Multi-soliton solutions and the Cauchy matrix scheme -- Similarity reductions of integrable PE's -- Discrete Painlevé equations -- Lagrangian multiform theory Mathematische Physik Integral equations Mathematical physics |
title | Discrete systems and integrability |
title_auth | Discrete systems and integrability |
title_exact_search | Discrete systems and integrability |
title_full | Discrete systems and integrability J. Hietarinta, N. Joshi, F.W. Nijhoff |
title_fullStr | Discrete systems and integrability J. Hietarinta, N. Joshi, F.W. Nijhoff |
title_full_unstemmed | Discrete systems and integrability J. Hietarinta, N. Joshi, F.W. Nijhoff |
title_short | Discrete systems and integrability |
title_sort | discrete systems and integrability |
topic | Mathematische Physik Integral equations Mathematical physics |
topic_facet | Mathematische Physik Integral equations Mathematical physics |
url | https://doi.org/10.1017/CBO9781107337411 |
work_keys_str_mv | AT hietarintaj discretesystemsandintegrability AT joshinalini discretesystemsandintegrability AT nijhofffrankw discretesystemsandintegrability |