Riemann surfaces and algebraic curves: a first course in Hurwitz theory
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introd...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Cambridge University Press
2016
|
Schriftenreihe: | London Mathematical Society student texts
87 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes |
Beschreibung: | 1 Online-Ressource (xii, 183 Seiten) |
ISBN: | 9781316569252 |
DOI: | 10.1017/CBO9781316569252 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940050 | ||
003 | DE-604 | ||
005 | 20231212 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316569252 |c Online |9 978-1-316-56925-2 | ||
024 | 7 | |a 10.1017/CBO9781316569252 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316569252 | ||
035 | |a (OCoLC)967678270 | ||
035 | |a (DE-599)BVBBV043940050 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.93 |2 23 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Cavalieri, Renzo |d 1976- |e Verfasser |0 (DE-588)1126047074 |4 aut | |
245 | 1 | 0 | |a Riemann surfaces and algebraic curves |b a first course in Hurwitz theory |c Renzo Cavalieri, Colorado State University, Eric Miles, Colorado Mesa University |
264 | 1 | |a New York |b Cambridge University Press |c 2016 | |
300 | |a 1 Online-Ressource (xii, 183 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 87 | |
520 | |a Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes | ||
650 | 4 | |a Riemann surfaces | |
650 | 4 | |a Curves, Algebraic | |
650 | 4 | |a Geometry, Algebraic | |
700 | 1 | |a Miles, Eric |e Verfasser |0 (DE-588)1118631137 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-14924-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-316-60352-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316569252 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349021 | ||
966 | e | |u https://doi.org/10.1017/CBO9781316569252 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316569252 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316569252 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176879995846656 |
---|---|
any_adam_object | |
author | Cavalieri, Renzo 1976- Miles, Eric |
author_GND | (DE-588)1126047074 (DE-588)1118631137 |
author_facet | Cavalieri, Renzo 1976- Miles, Eric |
author_role | aut aut |
author_sort | Cavalieri, Renzo 1976- |
author_variant | r c rc e m em |
building | Verbundindex |
bvnumber | BV043940050 |
classification_rvk | SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316569252 (OCoLC)967678270 (DE-599)BVBBV043940050 |
dewey-full | 515/.93 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.93 |
dewey-search | 515/.93 |
dewey-sort | 3515 293 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316569252 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02842nmm a2200457zcb4500</leader><controlfield tag="001">BV043940050</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316569252</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-56925-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316569252</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316569252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.93</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cavalieri, Renzo</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1126047074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemann surfaces and algebraic curves</subfield><subfield code="b">a first course in Hurwitz theory</subfield><subfield code="c">Renzo Cavalieri, Colorado State University, Eric Miles, Colorado Mesa University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 183 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">87</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miles, Eric</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1118631137</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-14924-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-316-60352-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316569252</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349021</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316569252</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316569252</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316569252</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940050 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:12Z |
institution | BVB |
isbn | 9781316569252 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349021 |
oclc_num | 967678270 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xii, 183 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO_Kauf ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Cavalieri, Renzo 1976- Verfasser (DE-588)1126047074 aut Riemann surfaces and algebraic curves a first course in Hurwitz theory Renzo Cavalieri, Colorado State University, Eric Miles, Colorado Mesa University New York Cambridge University Press 2016 1 Online-Ressource (xii, 183 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 87 Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes Riemann surfaces Curves, Algebraic Geometry, Algebraic Miles, Eric Verfasser (DE-588)1118631137 aut Erscheint auch als Druck-Ausgabe 978-1-107-14924-3 Erscheint auch als Druck-Ausgabe 978-1-316-60352-9 https://doi.org/10.1017/CBO9781316569252 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Cavalieri, Renzo 1976- Miles, Eric Riemann surfaces and algebraic curves a first course in Hurwitz theory Riemann surfaces Curves, Algebraic Geometry, Algebraic |
title | Riemann surfaces and algebraic curves a first course in Hurwitz theory |
title_auth | Riemann surfaces and algebraic curves a first course in Hurwitz theory |
title_exact_search | Riemann surfaces and algebraic curves a first course in Hurwitz theory |
title_full | Riemann surfaces and algebraic curves a first course in Hurwitz theory Renzo Cavalieri, Colorado State University, Eric Miles, Colorado Mesa University |
title_fullStr | Riemann surfaces and algebraic curves a first course in Hurwitz theory Renzo Cavalieri, Colorado State University, Eric Miles, Colorado Mesa University |
title_full_unstemmed | Riemann surfaces and algebraic curves a first course in Hurwitz theory Renzo Cavalieri, Colorado State University, Eric Miles, Colorado Mesa University |
title_short | Riemann surfaces and algebraic curves |
title_sort | riemann surfaces and algebraic curves a first course in hurwitz theory |
title_sub | a first course in Hurwitz theory |
topic | Riemann surfaces Curves, Algebraic Geometry, Algebraic |
topic_facet | Riemann surfaces Curves, Algebraic Geometry, Algebraic |
url | https://doi.org/10.1017/CBO9781316569252 |
work_keys_str_mv | AT cavalierirenzo riemannsurfacesandalgebraiccurvesafirstcourseinhurwitztheory AT mileseric riemannsurfacesandalgebraiccurvesafirstcourseinhurwitztheory |