Triangular orthogonal functions for the analysis of continuous time systems:
This book deals with a new set of triangular orthogonal functions, which evolved from the set of well known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Anthem Press
2011
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book deals with a new set of triangular orthogonal functions, which evolved from the set of well known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family |
Beschreibung: | Title from publisher's bibliographic system (viewed on 02 Oct 2015) |
Beschreibung: | 1 online resource (xii, 156 pages) |
ISBN: | 9781843318118 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043939616 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781843318118 |c Online |9 978-1-84331-811-8 | ||
035 | |a (ZDB-20-CBO)CR9781843318118 | ||
035 | |a (OCoLC)967678115 | ||
035 | |a (DE-599)BVBBV043939616 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515.55 |2 22 | |
100 | 1 | |a Deba, Anīśa |e Verfasser |4 aut | |
245 | 1 | 0 | |a Triangular orthogonal functions for the analysis of continuous time systems |c Anish Deb, Gautam Sarkar, Anindita Sengupta |
264 | 1 | |a London |b Anthem Press |c 2011 | |
300 | |a 1 online resource (xii, 156 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 02 Oct 2015) | ||
505 | 8 | 0 | |g Ch. 1 |t Walsh, Block Pulse, and Related Orthogonal Functions in Systems and Control |g 1.1 |t Orthogonal Functions and their Properties |g 1.2 |t Different Types of Nonsinusoidal Orthogonal Functions |g 1.3 |t Walsh Functions in Systems and Control |g 1.4 |t Block Pulse Functions in Systems and Control |g 1.5 |t Conclusion |t References |g ch. 2 |t A Newly Proposed Triangular Function Set and Its Properties |g 2.1 |t Walsh Functions and Related Operational Matrix for Integration |g 2.2 |t BPFs and Related Operational Matrices |g 2.3 |t Sample-and-Hold Functions [9] |g 2.4 |t From BPF to a Newly Defined Complementary Set of Triangular Functions |g 2.5 |t Piecewise Linear Approximation of a Square Integrable Function f(t) |g 2.6 |t Orthogonality of Triangular Basis Functions |g 2.7 |t A Few Properties of Orthogonal TF |g 2.8 |t Function Approximation via Optimal Triangular Function Coefficients |g 2.9 |t Conclusion |t References |g ch. 3 |t Function Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain -- |t Approximation of a Square Integrable Time Function f(t) by BPF and TF -- |t Operational Matrices for Integration in Triangular Function Domain -- |t Error Analysis -- |t Comparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions -- |t Conclusion -- |t References -- |t Analysis of Dynamic Systems via State Space Approach -- |t Analysis of Dynamic Systems via Triangular Functions -- |t Numerical Experiment [2] -- |t Conclusion -- |t References -- |t Convolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis -- |t Convolution Integral -- |t Convolution in Triangular Function Domain [3] -- |t Convolution of Two Time Functions in TF Domain -- |t Numerical Experiment -- |9 |g 3.1 |g 3.2 |g 3.3 |g 3.4 |g 3.5 |g ch. 4 |g 4.1 |g 4.2 |g 4.3 |g ch. 5 |g 5.1 |g 5.2 |g 5.3 |g 5.4 |g 5.5 |
505 | 8 | 0 | |t Integral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution -- |t Conclusion -- |t References -- |t Identification of SISO Control Systems via State Space Approach -- |t System Identification via State Space Approach -- |t Numerical Example [6] -- |t Conclusion -- |t References -- |t Solution of Integral Equations via Triangular Functions -- |t Solution of Integral Equations via Triangular Functions -- |t Conclusion -- |t References -- |t Microprocessor Based Simulation of Control Systems Using Orthogonal Functions -- |t Review of Delta Function and Sample-and-Hold Function Operational Technique -- |t Microprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] -- |t Conclusion -- |t References |9 |g 5.6 |g ch. 6 |g 6.1 |g 6.2 |g 6.3 |g ch. 7 |g 7.1 |g 7.2 |g ch. 8 |g 8.1 |g 8.2 |g 8.3 |
520 | |a This book deals with a new set of triangular orthogonal functions, which evolved from the set of well known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family | ||
650 | 4 | |a Functions, Orthogonal | |
700 | 1 | |a Sarkar, Gautam Prasad |e Sonstige |4 oth | |
700 | 1 | |a Sengupta, Anindita |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-85728-999-5 |
856 | 4 | 0 | |u http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029348587 | ||
966 | e | |u http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176879274426368 |
---|---|
any_adam_object | |
author | Deba, Anīśa |
author_facet | Deba, Anīśa |
author_role | aut |
author_sort | Deba, Anīśa |
author_variant | a d ad |
building | Verbundindex |
bvnumber | BV043939616 |
collection | ZDB-20-CBO |
contents | Walsh, Block Pulse, and Related Orthogonal Functions in Systems and Control Orthogonal Functions and their Properties Different Types of Nonsinusoidal Orthogonal Functions Walsh Functions in Systems and Control Block Pulse Functions in Systems and Control Conclusion References A Newly Proposed Triangular Function Set and Its Properties Walsh Functions and Related Operational Matrix for Integration BPFs and Related Operational Matrices Sample-and-Hold Functions [9] From BPF to a Newly Defined Complementary Set of Triangular Functions Piecewise Linear Approximation of a Square Integrable Function f(t) Orthogonality of Triangular Basis Functions A Few Properties of Orthogonal TF Function Approximation via Optimal Triangular Function Coefficients Function Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain -- Approximation of a Square Integrable Time Function f(t) by BPF and TF -- Operational Matrices for Integration in Triangular Function Domain -- Error Analysis -- Comparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions -- Conclusion -- References -- Analysis of Dynamic Systems via State Space Approach -- Analysis of Dynamic Systems via Triangular Functions -- Numerical Experiment [2] -- Convolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis -- Convolution Integral -- Convolution in Triangular Function Domain [3] -- Convolution of Two Time Functions in TF Domain -- Numerical Experiment -- Integral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution -- Identification of SISO Control Systems via State Space Approach -- System Identification via State Space Approach -- Numerical Example [6] -- Solution of Integral Equations via Triangular Functions -- Microprocessor Based Simulation of Control Systems Using Orthogonal Functions -- Review of Delta Function and Sample-and-Hold Function Operational Technique -- Microprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] -- |
ctrlnum | (ZDB-20-CBO)CR9781843318118 (OCoLC)967678115 (DE-599)BVBBV043939616 |
dewey-full | 515.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.55 |
dewey-search | 515.55 |
dewey-sort | 3515.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04490nmm a2200421zc 4500</leader><controlfield tag="001">BV043939616</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781843318118</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-84331-811-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781843318118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043939616</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deba, Anīśa</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triangular orthogonal functions for the analysis of continuous time systems</subfield><subfield code="c">Anish Deb, Gautam Sarkar, Anindita Sengupta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Anthem Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 156 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 02 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">Ch. 1</subfield><subfield code="t">Walsh, Block Pulse, and Related Orthogonal Functions in Systems and Control</subfield><subfield code="g">1.1</subfield><subfield code="t">Orthogonal Functions and their Properties</subfield><subfield code="g">1.2</subfield><subfield code="t">Different Types of Nonsinusoidal Orthogonal Functions</subfield><subfield code="g">1.3</subfield><subfield code="t">Walsh Functions in Systems and Control</subfield><subfield code="g">1.4</subfield><subfield code="t">Block Pulse Functions in Systems and Control</subfield><subfield code="g">1.5</subfield><subfield code="t">Conclusion</subfield><subfield code="t">References</subfield><subfield code="g">ch. 2</subfield><subfield code="t">A Newly Proposed Triangular Function Set and Its Properties</subfield><subfield code="g">2.1</subfield><subfield code="t">Walsh Functions and Related Operational Matrix for Integration</subfield><subfield code="g">2.2</subfield><subfield code="t">BPFs and Related Operational Matrices</subfield><subfield code="g">2.3</subfield><subfield code="t">Sample-and-Hold Functions [9]</subfield><subfield code="g">2.4</subfield><subfield code="t">From BPF to a Newly Defined Complementary Set of Triangular Functions</subfield><subfield code="g">2.5</subfield><subfield code="t">Piecewise Linear Approximation of a Square Integrable Function f(t)</subfield><subfield code="g">2.6</subfield><subfield code="t">Orthogonality of Triangular Basis Functions</subfield><subfield code="g">2.7</subfield><subfield code="t">A Few Properties of Orthogonal TF</subfield><subfield code="g">2.8</subfield><subfield code="t">Function Approximation via Optimal Triangular Function Coefficients</subfield><subfield code="g">2.9</subfield><subfield code="t">Conclusion</subfield><subfield code="t">References</subfield><subfield code="g">ch. 3</subfield><subfield code="t">Function Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain --</subfield><subfield code="t">Approximation of a Square Integrable Time Function f(t) by BPF and TF --</subfield><subfield code="t">Operational Matrices for Integration in Triangular Function Domain --</subfield><subfield code="t">Error Analysis --</subfield><subfield code="t">Comparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions --</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="t">Analysis of Dynamic Systems via State Space Approach --</subfield><subfield code="t">Analysis of Dynamic Systems via Triangular Functions --</subfield><subfield code="t">Numerical Experiment [2] --</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="t">Convolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis --</subfield><subfield code="t">Convolution Integral --</subfield><subfield code="t">Convolution in Triangular Function Domain [3] --</subfield><subfield code="t">Convolution of Two Time Functions in TF Domain --</subfield><subfield code="t">Numerical Experiment --</subfield><subfield code="9"> </subfield><subfield code="g">3.1</subfield><subfield code="g">3.2</subfield><subfield code="g">3.3</subfield><subfield code="g">3.4</subfield><subfield code="g">3.5</subfield><subfield code="g">ch. 4</subfield><subfield code="g">4.1</subfield><subfield code="g">4.2</subfield><subfield code="g">4.3</subfield><subfield code="g">ch. 5</subfield><subfield code="g">5.1</subfield><subfield code="g">5.2</subfield><subfield code="g">5.3</subfield><subfield code="g">5.4</subfield><subfield code="g">5.5</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Integral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution --</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="t">Identification of SISO Control Systems via State Space Approach --</subfield><subfield code="t">System Identification via State Space Approach --</subfield><subfield code="t">Numerical Example [6] --</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="t">Solution of Integral Equations via Triangular Functions --</subfield><subfield code="t">Solution of Integral Equations via Triangular Functions --</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="t">Microprocessor Based Simulation of Control Systems Using Orthogonal Functions --</subfield><subfield code="t">Review of Delta Function and Sample-and-Hold Function Operational Technique --</subfield><subfield code="t">Microprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] --</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References</subfield><subfield code="9"> </subfield><subfield code="g">5.6</subfield><subfield code="g">ch. 6</subfield><subfield code="g">6.1</subfield><subfield code="g">6.2</subfield><subfield code="g">6.3</subfield><subfield code="g">ch. 7</subfield><subfield code="g">7.1</subfield><subfield code="g">7.2</subfield><subfield code="g">ch. 8</subfield><subfield code="g">8.1</subfield><subfield code="g">8.2</subfield><subfield code="g">8.3</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with a new set of triangular orthogonal functions, which evolved from the set of well known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Orthogonal</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarkar, Gautam Prasad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sengupta, Anindita</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-85728-999-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029348587</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043939616 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:11Z |
institution | BVB |
isbn | 9781843318118 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029348587 |
oclc_num | 967678115 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 156 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Anthem Press |
record_format | marc |
spelling | Deba, Anīśa Verfasser aut Triangular orthogonal functions for the analysis of continuous time systems Anish Deb, Gautam Sarkar, Anindita Sengupta London Anthem Press 2011 1 online resource (xii, 156 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 02 Oct 2015) Ch. 1 Walsh, Block Pulse, and Related Orthogonal Functions in Systems and Control 1.1 Orthogonal Functions and their Properties 1.2 Different Types of Nonsinusoidal Orthogonal Functions 1.3 Walsh Functions in Systems and Control 1.4 Block Pulse Functions in Systems and Control 1.5 Conclusion References ch. 2 A Newly Proposed Triangular Function Set and Its Properties 2.1 Walsh Functions and Related Operational Matrix for Integration 2.2 BPFs and Related Operational Matrices 2.3 Sample-and-Hold Functions [9] 2.4 From BPF to a Newly Defined Complementary Set of Triangular Functions 2.5 Piecewise Linear Approximation of a Square Integrable Function f(t) 2.6 Orthogonality of Triangular Basis Functions 2.7 A Few Properties of Orthogonal TF 2.8 Function Approximation via Optimal Triangular Function Coefficients 2.9 Conclusion References ch. 3 Function Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain -- Approximation of a Square Integrable Time Function f(t) by BPF and TF -- Operational Matrices for Integration in Triangular Function Domain -- Error Analysis -- Comparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions -- Conclusion -- References -- Analysis of Dynamic Systems via State Space Approach -- Analysis of Dynamic Systems via Triangular Functions -- Numerical Experiment [2] -- Conclusion -- References -- Convolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis -- Convolution Integral -- Convolution in Triangular Function Domain [3] -- Convolution of Two Time Functions in TF Domain -- Numerical Experiment -- 3.1 3.2 3.3 3.4 3.5 ch. 4 4.1 4.2 4.3 ch. 5 5.1 5.2 5.3 5.4 5.5 Integral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution -- Conclusion -- References -- Identification of SISO Control Systems via State Space Approach -- System Identification via State Space Approach -- Numerical Example [6] -- Conclusion -- References -- Solution of Integral Equations via Triangular Functions -- Solution of Integral Equations via Triangular Functions -- Conclusion -- References -- Microprocessor Based Simulation of Control Systems Using Orthogonal Functions -- Review of Delta Function and Sample-and-Hold Function Operational Technique -- Microprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] -- Conclusion -- References 5.6 ch. 6 6.1 6.2 6.3 ch. 7 7.1 7.2 ch. 8 8.1 8.2 8.3 This book deals with a new set of triangular orthogonal functions, which evolved from the set of well known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family Functions, Orthogonal Sarkar, Gautam Prasad Sonstige oth Sengupta, Anindita Sonstige oth Erscheint auch als Druckausgabe 978-0-85728-999-5 http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Deba, Anīśa Triangular orthogonal functions for the analysis of continuous time systems Walsh, Block Pulse, and Related Orthogonal Functions in Systems and Control Orthogonal Functions and their Properties Different Types of Nonsinusoidal Orthogonal Functions Walsh Functions in Systems and Control Block Pulse Functions in Systems and Control Conclusion References A Newly Proposed Triangular Function Set and Its Properties Walsh Functions and Related Operational Matrix for Integration BPFs and Related Operational Matrices Sample-and-Hold Functions [9] From BPF to a Newly Defined Complementary Set of Triangular Functions Piecewise Linear Approximation of a Square Integrable Function f(t) Orthogonality of Triangular Basis Functions A Few Properties of Orthogonal TF Function Approximation via Optimal Triangular Function Coefficients Function Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain -- Approximation of a Square Integrable Time Function f(t) by BPF and TF -- Operational Matrices for Integration in Triangular Function Domain -- Error Analysis -- Comparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions -- Conclusion -- References -- Analysis of Dynamic Systems via State Space Approach -- Analysis of Dynamic Systems via Triangular Functions -- Numerical Experiment [2] -- Convolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis -- Convolution Integral -- Convolution in Triangular Function Domain [3] -- Convolution of Two Time Functions in TF Domain -- Numerical Experiment -- Integral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution -- Identification of SISO Control Systems via State Space Approach -- System Identification via State Space Approach -- Numerical Example [6] -- Solution of Integral Equations via Triangular Functions -- Microprocessor Based Simulation of Control Systems Using Orthogonal Functions -- Review of Delta Function and Sample-and-Hold Function Operational Technique -- Microprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] -- Functions, Orthogonal |
title | Triangular orthogonal functions for the analysis of continuous time systems |
title_alt | Walsh, Block Pulse, and Related Orthogonal Functions in Systems and Control Orthogonal Functions and their Properties Different Types of Nonsinusoidal Orthogonal Functions Walsh Functions in Systems and Control Block Pulse Functions in Systems and Control Conclusion References A Newly Proposed Triangular Function Set and Its Properties Walsh Functions and Related Operational Matrix for Integration BPFs and Related Operational Matrices Sample-and-Hold Functions [9] From BPF to a Newly Defined Complementary Set of Triangular Functions Piecewise Linear Approximation of a Square Integrable Function f(t) Orthogonality of Triangular Basis Functions A Few Properties of Orthogonal TF Function Approximation via Optimal Triangular Function Coefficients Function Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain -- Approximation of a Square Integrable Time Function f(t) by BPF and TF -- Operational Matrices for Integration in Triangular Function Domain -- Error Analysis -- Comparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions -- Conclusion -- References -- Analysis of Dynamic Systems via State Space Approach -- Analysis of Dynamic Systems via Triangular Functions -- Numerical Experiment [2] -- Convolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis -- Convolution Integral -- Convolution in Triangular Function Domain [3] -- Convolution of Two Time Functions in TF Domain -- Numerical Experiment -- Integral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution -- Identification of SISO Control Systems via State Space Approach -- System Identification via State Space Approach -- Numerical Example [6] -- Solution of Integral Equations via Triangular Functions -- Microprocessor Based Simulation of Control Systems Using Orthogonal Functions -- Review of Delta Function and Sample-and-Hold Function Operational Technique -- Microprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] -- |
title_auth | Triangular orthogonal functions for the analysis of continuous time systems |
title_exact_search | Triangular orthogonal functions for the analysis of continuous time systems |
title_full | Triangular orthogonal functions for the analysis of continuous time systems Anish Deb, Gautam Sarkar, Anindita Sengupta |
title_fullStr | Triangular orthogonal functions for the analysis of continuous time systems Anish Deb, Gautam Sarkar, Anindita Sengupta |
title_full_unstemmed | Triangular orthogonal functions for the analysis of continuous time systems Anish Deb, Gautam Sarkar, Anindita Sengupta |
title_short | Triangular orthogonal functions for the analysis of continuous time systems |
title_sort | triangular orthogonal functions for the analysis of continuous time systems |
topic | Functions, Orthogonal |
topic_facet | Functions, Orthogonal |
url | http://www.cambridge.org/core/product/identifier/9781843318118/type/BOOK |
work_keys_str_mv | AT debaanisa triangularorthogonalfunctionsfortheanalysisofcontinuoustimesystems AT sarkargautamprasad triangularorthogonalfunctionsfortheanalysisofcontinuoustimesystems AT senguptaanindita triangularorthogonalfunctionsfortheanalysisofcontinuoustimesystems |