Treatise on conic sections: edited in modern notation with introductions, including an essay on the earlier history of the subject
Active in Alexandria in the third century BCE, Apollonius of Perga ranks as one of the greatest Greek geometers. Building on foundations laid by Euclid, he is famous for defining the parabola, hyperbola and ellipse in his major treatise on conic sections. The dense nature of its text, however, made...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schriftenreihe: | Cambridge library collection. Mathematics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Active in Alexandria in the third century BCE, Apollonius of Perga ranks as one of the greatest Greek geometers. Building on foundations laid by Euclid, he is famous for defining the parabola, hyperbola and ellipse in his major treatise on conic sections. The dense nature of its text, however, made it inaccessible to most readers. When it was originally published in 1896 by the civil servant and classical scholar Thomas Little Heath (1861–1940), the present work was the first English translation and, more importantly, the first serious effort to standardise the terminology and notation. Along with clear diagrams, Heath includes a thorough introduction to the work and the history of the subject. Seeing the treatise as more than an esoteric artefact, Heath presents it as a valuable tool for modern mathematicians. His works on Diophantos of Alexandria (1885) and Aristarchus of Samos (1913) are also reissued in this series |
Beschreibung: | Originally published in Cambridge at the University Press in 1896 |
Beschreibung: | 1 online resource (clxx, 254 pages) |
ISBN: | 9781139856263 |
DOI: | 10.1017/CBO9781139856263 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043937275 | ||
003 | DE-604 | ||
005 | 20170301 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781139856263 |c Online |9 978-1-139-85626-3 | ||
024 | 7 | |a 10.1017/CBO9781139856263 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139856263 | ||
035 | |a (OCoLC)967677182 | ||
035 | |a (DE-599)BVBBV043937275 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.2/152 |2 23 | |
100 | 0 | |a Apollonius |c Pergaeus |d v262-v190 |e Verfasser |0 (DE-588)11864548X |4 aut | |
240 | 1 | 0 | |a Conics |
245 | 1 | 0 | |a Treatise on conic sections |b edited in modern notation with introductions, including an essay on the earlier history of the subject |c Apollonius of Perga ; edited by T. L. Heath |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 online resource (clxx, 254 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge library collection. Mathematics | |
500 | |a Originally published in Cambridge at the University Press in 1896 | ||
520 | |a Active in Alexandria in the third century BCE, Apollonius of Perga ranks as one of the greatest Greek geometers. Building on foundations laid by Euclid, he is famous for defining the parabola, hyperbola and ellipse in his major treatise on conic sections. The dense nature of its text, however, made it inaccessible to most readers. When it was originally published in 1896 by the civil servant and classical scholar Thomas Little Heath (1861–1940), the present work was the first English translation and, more importantly, the first serious effort to standardise the terminology and notation. Along with clear diagrams, Heath includes a thorough introduction to the work and the history of the subject. Seeing the treatise as more than an esoteric artefact, Heath presents it as a valuable tool for modern mathematicians. His works on Diophantos of Alexandria (1885) and Aristarchus of Samos (1913) are also reissued in this series | ||
600 | 0 | 7 | |a Apollonius |c Pergaeus |d v262-v190 |t Conica |0 (DE-588)4319941-0 |2 gnd |9 rswk-swf |
600 | 0 | 7 | |a Apollonius |c Pergaeus |d v262-v190 |t Conica 8 |0 (DE-588)4710688-8 |2 gnd |9 rswk-swf |
600 | 0 | 7 | |a Apollonius |c Pergaeus |d v262-v190 |0 (DE-588)11864548X |2 gnd |9 rswk-swf |
600 | 1 | 7 | |a Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan |d 965-1039 |0 (DE-588)118648160 |2 gnd |9 rswk-swf |
648 | 7 | |a Geschichte 230 v.Chr.-190 v.Chr. |2 gnd |9 rswk-swf | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
648 | 7 | |a Geschichte 200 v. Chr. |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics, Greek | |
650 | 4 | |a Conic sections | |
650 | 0 | 7 | |a Rekonstruktion |0 (DE-588)4136102-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raum |0 (DE-588)4048561-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kegelschnitt |0 (DE-588)4125170-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
651 | 7 | |a Griechenland |g Altertum |0 (DE-588)4093976-5 |2 gnd |9 rswk-swf | |
655 | 7 | |8 1\p |0 (DE-588)4135952-5 |a Quelle |2 gnd-content | |
689 | 0 | 0 | |a Griechenland |g Altertum |0 (DE-588)4093976-5 |D g |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 2 | |a Geschichte 200 v. Chr. |A z |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Griechenland |g Altertum |0 (DE-588)4093976-5 |D g |
689 | 1 | 1 | |a Kegelschnitt |0 (DE-588)4125170-2 |D s |
689 | 1 | 2 | |a Geschichte |A z |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 2 | 1 | |a Geschichte |A z |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Apollonius |c Pergaeus |d v262-v190 |t Conica 8 |0 (DE-588)4710688-8 |D u |
689 | 3 | 1 | |a Rekonstruktion |0 (DE-588)4136102-7 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
689 | 4 | 0 | |a Apollonius |c Pergaeus |d v262-v190 |t Conica 8 |0 (DE-588)4710688-8 |D u |
689 | 4 | 1 | |a Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan |d 965-1039 |0 (DE-588)118648160 |D p |
689 | 4 | |8 6\p |5 DE-604 | |
689 | 5 | 0 | |a Raum |0 (DE-588)4048561-4 |D s |
689 | 5 | 1 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 5 | |8 7\p |5 DE-604 | |
689 | 6 | 0 | |a Kegelschnitt |0 (DE-588)4125170-2 |D s |
689 | 6 | 1 | |a Geschichte 230 v.Chr.-190 v.Chr. |A z |
689 | 6 | |8 8\p |5 DE-604 | |
689 | 7 | 0 | |a Apollonius |c Pergaeus |d v262-v190 |t Conica |0 (DE-588)4319941-0 |D u |
689 | 7 | |8 9\p |5 DE-604 | |
689 | 8 | 0 | |a Apollonius |c Pergaeus |d v262-v190 |0 (DE-588)11864548X |D p |
689 | 8 | |8 10\p |5 DE-604 | |
700 | 1 | |a Heath, Thomas L. |d 1861-1940 |0 (DE-588)124203701 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-108-06278-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139856263 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029346246 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 8\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 9\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 10\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139856263 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139856263 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176875222728704 |
---|---|
any_adam_object | |
author | Apollonius Pergaeus v262-v190 |
author2 | Heath, Thomas L. 1861-1940 |
author2_role | edt |
author2_variant | t l h tl tlh |
author_GND | (DE-588)11864548X (DE-588)124203701 |
author_facet | Apollonius Pergaeus v262-v190 Heath, Thomas L. 1861-1940 |
author_role | aut |
author_sort | Apollonius Pergaeus v262-v190 |
author_variant | a |
building | Verbundindex |
bvnumber | BV043937275 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139856263 (OCoLC)967677182 (DE-599)BVBBV043937275 |
dewey-full | 516.2/152 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.2/152 |
dewey-search | 516.2/152 |
dewey-sort | 3516.2 3152 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139856263 |
era | Geschichte 230 v.Chr.-190 v.Chr. gnd Geschichte gnd Geschichte 200 v. Chr. gnd |
era_facet | Geschichte 230 v.Chr.-190 v.Chr. Geschichte Geschichte 200 v. Chr. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05855nmm a2201057zc 4500</leader><controlfield tag="001">BV043937275</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170301 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139856263</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-85626-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139856263</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139856263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967677182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043937275</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.2/152</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11864548X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Conics</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Treatise on conic sections</subfield><subfield code="b">edited in modern notation with introductions, including an essay on the earlier history of the subject</subfield><subfield code="c">Apollonius of Perga ; edited by T. L. Heath</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (clxx, 254 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge library collection. Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published in Cambridge at the University Press in 1896</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Active in Alexandria in the third century BCE, Apollonius of Perga ranks as one of the greatest Greek geometers. Building on foundations laid by Euclid, he is famous for defining the parabola, hyperbola and ellipse in his major treatise on conic sections. The dense nature of its text, however, made it inaccessible to most readers. When it was originally published in 1896 by the civil servant and classical scholar Thomas Little Heath (1861–1940), the present work was the first English translation and, more importantly, the first serious effort to standardise the terminology and notation. Along with clear diagrams, Heath includes a thorough introduction to the work and the history of the subject. Seeing the treatise as more than an esoteric artefact, Heath presents it as a valuable tool for modern mathematicians. His works on Diophantos of Alexandria (1885) and Aristarchus of Samos (1913) are also reissued in this series</subfield></datafield><datafield tag="600" ind1="0" ind2="7"><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="t">Conica</subfield><subfield code="0">(DE-588)4319941-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="600" ind1="0" ind2="7"><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="t">Conica 8</subfield><subfield code="0">(DE-588)4710688-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="600" ind1="0" ind2="7"><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="0">(DE-588)11864548X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan</subfield><subfield code="d">965-1039</subfield><subfield code="0">(DE-588)118648160</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 230 v.Chr.-190 v.Chr.</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 200 v. Chr.</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, Greek</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conic sections</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekonstruktion</subfield><subfield code="0">(DE-588)4136102-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raum</subfield><subfield code="0">(DE-588)4048561-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kegelschnitt</subfield><subfield code="0">(DE-588)4125170-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">Griechenland</subfield><subfield code="g">Altertum</subfield><subfield code="0">(DE-588)4093976-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4135952-5</subfield><subfield code="a">Quelle</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Griechenland</subfield><subfield code="g">Altertum</subfield><subfield code="0">(DE-588)4093976-5</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte 200 v. Chr.</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Griechenland</subfield><subfield code="g">Altertum</subfield><subfield code="0">(DE-588)4093976-5</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kegelschnitt</subfield><subfield code="0">(DE-588)4125170-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="t">Conica 8</subfield><subfield code="0">(DE-588)4710688-8</subfield><subfield code="D">u</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Rekonstruktion</subfield><subfield code="0">(DE-588)4136102-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="t">Conica 8</subfield><subfield code="0">(DE-588)4710688-8</subfield><subfield code="D">u</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan</subfield><subfield code="d">965-1039</subfield><subfield code="0">(DE-588)118648160</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Raum</subfield><subfield code="0">(DE-588)4048561-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Kegelschnitt</subfield><subfield code="0">(DE-588)4125170-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2="1"><subfield code="a">Geschichte 230 v.Chr.-190 v.Chr.</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">8\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="t">Conica</subfield><subfield code="0">(DE-588)4319941-0</subfield><subfield code="D">u</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="8">9\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="8" ind2="0"><subfield code="a">Apollonius</subfield><subfield code="c">Pergaeus</subfield><subfield code="d">v262-v190</subfield><subfield code="0">(DE-588)11864548X</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="8" ind2=" "><subfield code="8">10\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heath, Thomas L.</subfield><subfield code="d">1861-1940</subfield><subfield code="0">(DE-588)124203701</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-108-06278-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139856263</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029346246</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">8\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">9\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">10\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139856263</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139856263</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4135952-5 Quelle gnd-content |
genre_facet | Quelle |
geographic | Griechenland Altertum (DE-588)4093976-5 gnd |
geographic_facet | Griechenland Altertum |
id | DE-604.BV043937275 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:08Z |
institution | BVB |
isbn | 9781139856263 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029346246 |
oclc_num | 967677182 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (clxx, 254 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge library collection. Mathematics |
spelling | Apollonius Pergaeus v262-v190 Verfasser (DE-588)11864548X aut Conics Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject Apollonius of Perga ; edited by T. L. Heath Cambridge Cambridge University Press 2014 1 online resource (clxx, 254 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge library collection. Mathematics Originally published in Cambridge at the University Press in 1896 Active in Alexandria in the third century BCE, Apollonius of Perga ranks as one of the greatest Greek geometers. Building on foundations laid by Euclid, he is famous for defining the parabola, hyperbola and ellipse in his major treatise on conic sections. The dense nature of its text, however, made it inaccessible to most readers. When it was originally published in 1896 by the civil servant and classical scholar Thomas Little Heath (1861–1940), the present work was the first English translation and, more importantly, the first serious effort to standardise the terminology and notation. Along with clear diagrams, Heath includes a thorough introduction to the work and the history of the subject. Seeing the treatise as more than an esoteric artefact, Heath presents it as a valuable tool for modern mathematicians. His works on Diophantos of Alexandria (1885) and Aristarchus of Samos (1913) are also reissued in this series Apollonius Pergaeus v262-v190 Conica (DE-588)4319941-0 gnd rswk-swf Apollonius Pergaeus v262-v190 Conica 8 (DE-588)4710688-8 gnd rswk-swf Apollonius Pergaeus v262-v190 (DE-588)11864548X gnd rswk-swf Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan 965-1039 (DE-588)118648160 gnd rswk-swf Geschichte 230 v.Chr.-190 v.Chr. gnd rswk-swf Geschichte gnd rswk-swf Geschichte 200 v. Chr. gnd rswk-swf Mathematics, Greek Conic sections Rekonstruktion (DE-588)4136102-7 gnd rswk-swf Raum (DE-588)4048561-4 gnd rswk-swf Theorie (DE-588)4059787-8 gnd rswk-swf Kegelschnitt (DE-588)4125170-2 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Griechenland Altertum (DE-588)4093976-5 gnd rswk-swf 1\p (DE-588)4135952-5 Quelle gnd-content Griechenland Altertum (DE-588)4093976-5 g Mathematik (DE-588)4037944-9 s Geschichte 200 v. Chr. z 2\p DE-604 Kegelschnitt (DE-588)4125170-2 s Geschichte z 3\p DE-604 Geometrie (DE-588)4020236-7 s 4\p DE-604 Apollonius Pergaeus v262-v190 Conica 8 (DE-588)4710688-8 u Rekonstruktion (DE-588)4136102-7 s 5\p DE-604 Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan 965-1039 (DE-588)118648160 p 6\p DE-604 Raum (DE-588)4048561-4 s Theorie (DE-588)4059787-8 s 7\p DE-604 Geschichte 230 v.Chr.-190 v.Chr. z 8\p DE-604 Apollonius Pergaeus v262-v190 Conica (DE-588)4319941-0 u 9\p DE-604 Apollonius Pergaeus v262-v190 (DE-588)11864548X p 10\p DE-604 Heath, Thomas L. 1861-1940 (DE-588)124203701 edt Erscheint auch als Druckausgabe 978-1-108-06278-7 https://doi.org/10.1017/CBO9781139856263 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 8\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 9\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 10\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Apollonius Pergaeus v262-v190 Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject Apollonius Pergaeus v262-v190 Conica (DE-588)4319941-0 gnd Apollonius Pergaeus v262-v190 Conica 8 (DE-588)4710688-8 gnd Apollonius Pergaeus v262-v190 (DE-588)11864548X gnd Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan 965-1039 (DE-588)118648160 gnd Mathematics, Greek Conic sections Rekonstruktion (DE-588)4136102-7 gnd Raum (DE-588)4048561-4 gnd Theorie (DE-588)4059787-8 gnd Kegelschnitt (DE-588)4125170-2 gnd Geometrie (DE-588)4020236-7 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4319941-0 (DE-588)4710688-8 (DE-588)11864548X (DE-588)118648160 (DE-588)4136102-7 (DE-588)4048561-4 (DE-588)4059787-8 (DE-588)4125170-2 (DE-588)4020236-7 (DE-588)4037944-9 (DE-588)4093976-5 (DE-588)4135952-5 |
title | Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject |
title_alt | Conics |
title_auth | Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject |
title_exact_search | Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject |
title_full | Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject Apollonius of Perga ; edited by T. L. Heath |
title_fullStr | Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject Apollonius of Perga ; edited by T. L. Heath |
title_full_unstemmed | Treatise on conic sections edited in modern notation with introductions, including an essay on the earlier history of the subject Apollonius of Perga ; edited by T. L. Heath |
title_short | Treatise on conic sections |
title_sort | treatise on conic sections edited in modern notation with introductions including an essay on the earlier history of the subject |
title_sub | edited in modern notation with introductions, including an essay on the earlier history of the subject |
topic | Apollonius Pergaeus v262-v190 Conica (DE-588)4319941-0 gnd Apollonius Pergaeus v262-v190 Conica 8 (DE-588)4710688-8 gnd Apollonius Pergaeus v262-v190 (DE-588)11864548X gnd Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan 965-1039 (DE-588)118648160 gnd Mathematics, Greek Conic sections Rekonstruktion (DE-588)4136102-7 gnd Raum (DE-588)4048561-4 gnd Theorie (DE-588)4059787-8 gnd Kegelschnitt (DE-588)4125170-2 gnd Geometrie (DE-588)4020236-7 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Apollonius Pergaeus v262-v190 Conica Apollonius Pergaeus v262-v190 Conica 8 Apollonius Pergaeus v262-v190 Ibn-al-Haiṯam, al-Ḥasan Ibn-al-Ḥasan 965-1039 Mathematics, Greek Conic sections Rekonstruktion Raum Theorie Kegelschnitt Geometrie Mathematik Griechenland Altertum Quelle |
url | https://doi.org/10.1017/CBO9781139856263 |
work_keys_str_mv | AT apollonius conics AT heaththomasl conics AT apollonius treatiseonconicsectionseditedinmodernnotationwithintroductionsincludinganessayontheearlierhistoryofthesubject AT heaththomasl treatiseonconicsectionseditedinmodernnotationwithintroductionsincludinganessayontheearlierhistoryofthesubject |