Domain conditions in social choice theory:
Wulf Gaertner provides a comprehensive account of an important and complex issue within social choice theory: how to establish a social welfare function while restricting the spectrum of individual preferences in a sensible way. Gaertner's starting point is K. J. Arrow's famous 'Impos...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2001
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 Volltext |
Zusammenfassung: | Wulf Gaertner provides a comprehensive account of an important and complex issue within social choice theory: how to establish a social welfare function while restricting the spectrum of individual preferences in a sensible way. Gaertner's starting point is K. J. Arrow's famous 'Impossibility Theorem', which showed that no welfare function could exist if an unrestricted domain of preferences is to be satisfied together with some other appealing conditions. A number of leading economists have tried to provide avenues out of this 'impossibility' by restricting the variety of preferences: here, Gaertner provides a clear and detailed account, using standardized mathematical notation, of well over forty theorems associated with domain conditions. Domain Conditions in Social Choice Theory will be an essential addition to the library of social choice theory for scholars and their advanced graduate students |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 153 pages) |
ISBN: | 9780511492303 |
DOI: | 10.1017/CBO9780511492303 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043927765 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161202s2001 |||| o||u| ||||||eng d | ||
020 | |a 9780511492303 |c Online |9 978-0-511-49230-3 | ||
024 | 7 | |a 10.1017/CBO9780511492303 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511492303 | ||
035 | |a (OCoLC)704460990 | ||
035 | |a (DE-599)BVBBV043927765 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 302/.13 |2 21 | |
084 | |a MB 2520 |0 (DE-625)122287: |2 rvk | ||
084 | |a QC 160 |0 (DE-625)141257: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
100 | 1 | |a Gaertner, Wulf |e Verfasser |4 aut | |
245 | 1 | 0 | |a Domain conditions in social choice theory |c Wulf Gaertner |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2001 | |
300 | |a 1 online resource (ix, 153 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g 1 |t Introduction |g 2 |t Notation, definitions, and two fundamental theorems |g 3 |t The existence of collective choice rules under exclusion conditions for finite sets of discrete alternatives |g 4 |t Arrovian social welfare functions, nonmanipulable voting procedures and stable group decision functions |g 5 |t Restrictions on the distribution of individuals' preferences |g 6 |t The existence of social choice rules in n-dimensional continuous space |g 7 |t Concluding remarks |
520 | |a Wulf Gaertner provides a comprehensive account of an important and complex issue within social choice theory: how to establish a social welfare function while restricting the spectrum of individual preferences in a sensible way. Gaertner's starting point is K. J. Arrow's famous 'Impossibility Theorem', which showed that no welfare function could exist if an unrestricted domain of preferences is to be satisfied together with some other appealing conditions. A number of leading economists have tried to provide avenues out of this 'impossibility' by restricting the variety of preferences: here, Gaertner provides a clear and detailed account, using standardized mathematical notation, of well over forty theorems associated with domain conditions. Domain Conditions in Social Choice Theory will be an essential addition to the library of social choice theory for scholars and their advanced graduate students | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Social choice / Mathematical models | |
650 | 4 | |a Decision making / Mathematical models | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kollektiventscheidung |0 (DE-588)4022393-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kollektiventscheidung |0 (DE-588)4022393-0 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-02874-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-79102-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511492303 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029336842 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511492303 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511492303 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176856847482880 |
---|---|
any_adam_object | |
author | Gaertner, Wulf |
author_facet | Gaertner, Wulf |
author_role | aut |
author_sort | Gaertner, Wulf |
author_variant | w g wg |
building | Verbundindex |
bvnumber | BV043927765 |
classification_rvk | MB 2520 QC 160 SK 850 |
collection | ZDB-20-CBO |
contents | Introduction Notation, definitions, and two fundamental theorems The existence of collective choice rules under exclusion conditions for finite sets of discrete alternatives Arrovian social welfare functions, nonmanipulable voting procedures and stable group decision functions Restrictions on the distribution of individuals' preferences The existence of social choice rules in n-dimensional continuous space Concluding remarks |
ctrlnum | (ZDB-20-CBO)CR9780511492303 (OCoLC)704460990 (DE-599)BVBBV043927765 |
dewey-full | 302/.13 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 302 - Social interaction |
dewey-raw | 302/.13 |
dewey-search | 302/.13 |
dewey-sort | 3302 213 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie Politologie Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511492303 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03508nmm a2200541zc 4500</leader><controlfield tag="001">BV043927765</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511492303</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-49230-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511492303</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511492303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704460990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043927765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">302/.13</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MB 2520</subfield><subfield code="0">(DE-625)122287:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 160</subfield><subfield code="0">(DE-625)141257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gaertner, Wulf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domain conditions in social choice theory</subfield><subfield code="c">Wulf Gaertner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 153 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">1</subfield><subfield code="t">Introduction</subfield><subfield code="g">2</subfield><subfield code="t">Notation, definitions, and two fundamental theorems</subfield><subfield code="g">3</subfield><subfield code="t">The existence of collective choice rules under exclusion conditions for finite sets of discrete alternatives</subfield><subfield code="g">4</subfield><subfield code="t">Arrovian social welfare functions, nonmanipulable voting procedures and stable group decision functions</subfield><subfield code="g">5</subfield><subfield code="t">Restrictions on the distribution of individuals' preferences</subfield><subfield code="g">6</subfield><subfield code="t">The existence of social choice rules in n-dimensional continuous space</subfield><subfield code="g">7</subfield><subfield code="t">Concluding remarks</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wulf Gaertner provides a comprehensive account of an important and complex issue within social choice theory: how to establish a social welfare function while restricting the spectrum of individual preferences in a sensible way. Gaertner's starting point is K. J. Arrow's famous 'Impossibility Theorem', which showed that no welfare function could exist if an unrestricted domain of preferences is to be satisfied together with some other appealing conditions. A number of leading economists have tried to provide avenues out of this 'impossibility' by restricting the variety of preferences: here, Gaertner provides a clear and detailed account, using standardized mathematical notation, of well over forty theorems associated with domain conditions. Domain Conditions in Social Choice Theory will be an essential addition to the library of social choice theory for scholars and their advanced graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social choice / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making / Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kollektiventscheidung</subfield><subfield code="0">(DE-588)4022393-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kollektiventscheidung</subfield><subfield code="0">(DE-588)4022393-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-02874-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-79102-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511492303</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029336842</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511492303</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511492303</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043927765 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:38:50Z |
institution | BVB |
isbn | 9780511492303 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029336842 |
oclc_num | 704460990 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 online resource (ix, 153 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Gaertner, Wulf Verfasser aut Domain conditions in social choice theory Wulf Gaertner Cambridge Cambridge University Press 2001 1 online resource (ix, 153 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1 Introduction 2 Notation, definitions, and two fundamental theorems 3 The existence of collective choice rules under exclusion conditions for finite sets of discrete alternatives 4 Arrovian social welfare functions, nonmanipulable voting procedures and stable group decision functions 5 Restrictions on the distribution of individuals' preferences 6 The existence of social choice rules in n-dimensional continuous space 7 Concluding remarks Wulf Gaertner provides a comprehensive account of an important and complex issue within social choice theory: how to establish a social welfare function while restricting the spectrum of individual preferences in a sensible way. Gaertner's starting point is K. J. Arrow's famous 'Impossibility Theorem', which showed that no welfare function could exist if an unrestricted domain of preferences is to be satisfied together with some other appealing conditions. A number of leading economists have tried to provide avenues out of this 'impossibility' by restricting the variety of preferences: here, Gaertner provides a clear and detailed account, using standardized mathematical notation, of well over forty theorems associated with domain conditions. Domain Conditions in Social Choice Theory will be an essential addition to the library of social choice theory for scholars and their advanced graduate students Mathematisches Modell Social choice / Mathematical models Decision making / Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Kollektiventscheidung (DE-588)4022393-0 gnd rswk-swf Kollektiventscheidung (DE-588)4022393-0 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-02874-5 Erscheint auch als Druckausgabe 978-0-521-79102-1 https://doi.org/10.1017/CBO9780511492303 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gaertner, Wulf Domain conditions in social choice theory Introduction Notation, definitions, and two fundamental theorems The existence of collective choice rules under exclusion conditions for finite sets of discrete alternatives Arrovian social welfare functions, nonmanipulable voting procedures and stable group decision functions Restrictions on the distribution of individuals' preferences The existence of social choice rules in n-dimensional continuous space Concluding remarks Mathematisches Modell Social choice / Mathematical models Decision making / Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Kollektiventscheidung (DE-588)4022393-0 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4022393-0 |
title | Domain conditions in social choice theory |
title_alt | Introduction Notation, definitions, and two fundamental theorems The existence of collective choice rules under exclusion conditions for finite sets of discrete alternatives Arrovian social welfare functions, nonmanipulable voting procedures and stable group decision functions Restrictions on the distribution of individuals' preferences The existence of social choice rules in n-dimensional continuous space Concluding remarks |
title_auth | Domain conditions in social choice theory |
title_exact_search | Domain conditions in social choice theory |
title_full | Domain conditions in social choice theory Wulf Gaertner |
title_fullStr | Domain conditions in social choice theory Wulf Gaertner |
title_full_unstemmed | Domain conditions in social choice theory Wulf Gaertner |
title_short | Domain conditions in social choice theory |
title_sort | domain conditions in social choice theory |
topic | Mathematisches Modell Social choice / Mathematical models Decision making / Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Kollektiventscheidung (DE-588)4022393-0 gnd |
topic_facet | Mathematisches Modell Social choice / Mathematical models Decision making / Mathematical models Kollektiventscheidung |
url | https://doi.org/10.1017/CBO9780511492303 |
work_keys_str_mv | AT gaertnerwulf domainconditionsinsocialchoicetheory |