An introduction to Gödel's Theorems:
In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge introductions to philosophy
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBG01 Volltext |
Zusammenfassung: | In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 361 pages) |
ISBN: | 9780511800962 |
DOI: | 10.1017/CBO9780511800962 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043919652 | ||
003 | DE-604 | ||
005 | 20190916 | ||
007 | cr|uuu---uuuuu | ||
008 | 161202s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511800962 |c Online |9 978-0-511-80096-2 | ||
024 | 7 | |a 10.1017/CBO9780511800962 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511800962 | ||
035 | |a (OCoLC)971456813 | ||
035 | |a (DE-599)BVBBV043919652 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 |a DE-92 | ||
082 | 0 | |a 511.3 |2 22 | |
084 | |a CI 2305 |0 (DE-625)18393:11798 |2 rvk | ||
084 | |a CC 2000 |0 (DE-625)17606: |2 rvk | ||
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Smith, Peter |d 1944- |e Verfasser |0 (DE-588)173658121 |4 aut | |
245 | 1 | 0 | |a An introduction to Gödel's Theorems |c Peter Smith |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xiv, 361 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge introductions to philosophy | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a What Godel's theorems say -- Decidability and enumerability -- Axiomatized formal theories -- Capturing numerical properties -- The truths of arithmetic -- Sufficiently strong arithmetics -- Interlude: taking stock -- Two formalized arithmetics -- What q can prove -- First-order peano arithmetic -- Primitive recursive functions -- Capturing p r functions -- Q is p.r. adequate -- Interlude: a very little about Principia -- The arithmetization of syntax -- PA is incomplete -- Godel's first theorem -- Interlude: about the first theorem -- Strengthening the first theorem -- The diagonalization lemma -- Using the diagonalization lemma -- Second-order arithmetics -- Interlude: incompleteness and Isaacson's conjecture -- Godel's second theorem for PA -- The derivability conditions -- Deriving the derivability conditions -- Reflections -- Interlude: about the second theorem -- Recursive functions -- Undecidability and incompleteness -- Turing machines -- Turing machines and recursiveness -- Halting problems -- The church-turing thesis -- Proving the thesis | |
520 | |a In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic | ||
600 | 1 | 4 | |a Gödel, Kurt |
650 | 4 | |a Gödel numbers | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 0 | 7 | |a Gödelscher Unvollständigkeitssatz |0 (DE-588)4021417-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Gödelscher Unvollständigkeitssatz |0 (DE-588)4021417-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-67453-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-85784-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511800962 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029328735 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511800962 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511800962 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511800962 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176839434829824 |
---|---|
any_adam_object | |
author | Smith, Peter 1944- |
author_GND | (DE-588)173658121 |
author_facet | Smith, Peter 1944- |
author_role | aut |
author_sort | Smith, Peter 1944- |
author_variant | p s ps |
building | Verbundindex |
bvnumber | BV043919652 |
classification_rvk | CI 2305 CC 2000 CC 2600 SK 130 |
collection | ZDB-20-CBO |
contents | What Godel's theorems say -- Decidability and enumerability -- Axiomatized formal theories -- Capturing numerical properties -- The truths of arithmetic -- Sufficiently strong arithmetics -- Interlude: taking stock -- Two formalized arithmetics -- What q can prove -- First-order peano arithmetic -- Primitive recursive functions -- Capturing p r functions -- Q is p.r. adequate -- Interlude: a very little about Principia -- The arithmetization of syntax -- PA is incomplete -- Godel's first theorem -- Interlude: about the first theorem -- Strengthening the first theorem -- The diagonalization lemma -- Using the diagonalization lemma -- Second-order arithmetics -- Interlude: incompleteness and Isaacson's conjecture -- Godel's second theorem for PA -- The derivability conditions -- Deriving the derivability conditions -- Reflections -- Interlude: about the second theorem -- Recursive functions -- Undecidability and incompleteness -- Turing machines -- Turing machines and recursiveness -- Halting problems -- The church-turing thesis -- Proving the thesis |
ctrlnum | (ZDB-20-CBO)CR9780511800962 (OCoLC)971456813 (DE-599)BVBBV043919652 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
doi_str_mv | 10.1017/CBO9780511800962 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04397nmm a2200577zc 4500</leader><controlfield tag="001">BV043919652</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190916 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511800962</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-80096-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511800962</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511800962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)971456813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043919652</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CI 2305</subfield><subfield code="0">(DE-625)18393:11798</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2000</subfield><subfield code="0">(DE-625)17606:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Peter</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173658121</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to Gödel's Theorems</subfield><subfield code="c">Peter Smith</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 361 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge introductions to philosophy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">What Godel's theorems say -- Decidability and enumerability -- Axiomatized formal theories -- Capturing numerical properties -- The truths of arithmetic -- Sufficiently strong arithmetics -- Interlude: taking stock -- Two formalized arithmetics -- What q can prove -- First-order peano arithmetic -- Primitive recursive functions -- Capturing p r functions -- Q is p.r. adequate -- Interlude: a very little about Principia -- The arithmetization of syntax -- PA is incomplete -- Godel's first theorem -- Interlude: about the first theorem -- Strengthening the first theorem -- The diagonalization lemma -- Using the diagonalization lemma -- Second-order arithmetics -- Interlude: incompleteness and Isaacson's conjecture -- Godel's second theorem for PA -- The derivability conditions -- Deriving the derivability conditions -- Reflections -- Interlude: about the second theorem -- Recursive functions -- Undecidability and incompleteness -- Turing machines -- Turing machines and recursiveness -- Halting problems -- The church-turing thesis -- Proving the thesis</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Gödel, Kurt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gödel numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-67453-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-85784-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511800962</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029328735</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511800962</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511800962</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511800962</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043919652 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:38:33Z |
institution | BVB |
isbn | 9780511800962 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029328735 |
oclc_num | 971456813 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-92 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-92 |
physical | 1 online resource (xiv, 361 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge introductions to philosophy |
spelling | Smith, Peter 1944- Verfasser (DE-588)173658121 aut An introduction to Gödel's Theorems Peter Smith Cambridge Cambridge University Press 2007 1 online resource (xiv, 361 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge introductions to philosophy Title from publisher's bibliographic system (viewed on 05 Oct 2015) What Godel's theorems say -- Decidability and enumerability -- Axiomatized formal theories -- Capturing numerical properties -- The truths of arithmetic -- Sufficiently strong arithmetics -- Interlude: taking stock -- Two formalized arithmetics -- What q can prove -- First-order peano arithmetic -- Primitive recursive functions -- Capturing p r functions -- Q is p.r. adequate -- Interlude: a very little about Principia -- The arithmetization of syntax -- PA is incomplete -- Godel's first theorem -- Interlude: about the first theorem -- Strengthening the first theorem -- The diagonalization lemma -- Using the diagonalization lemma -- Second-order arithmetics -- Interlude: incompleteness and Isaacson's conjecture -- Godel's second theorem for PA -- The derivability conditions -- Deriving the derivability conditions -- Reflections -- Interlude: about the second theorem -- Recursive functions -- Undecidability and incompleteness -- Turing machines -- Turing machines and recursiveness -- Halting problems -- The church-turing thesis -- Proving the thesis In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic Gödel, Kurt Gödel numbers Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-67453-9 Erscheint auch als Druckausgabe 978-0-521-85784-0 https://doi.org/10.1017/CBO9780511800962 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Smith, Peter 1944- An introduction to Gödel's Theorems What Godel's theorems say -- Decidability and enumerability -- Axiomatized formal theories -- Capturing numerical properties -- The truths of arithmetic -- Sufficiently strong arithmetics -- Interlude: taking stock -- Two formalized arithmetics -- What q can prove -- First-order peano arithmetic -- Primitive recursive functions -- Capturing p r functions -- Q is p.r. adequate -- Interlude: a very little about Principia -- The arithmetization of syntax -- PA is incomplete -- Godel's first theorem -- Interlude: about the first theorem -- Strengthening the first theorem -- The diagonalization lemma -- Using the diagonalization lemma -- Second-order arithmetics -- Interlude: incompleteness and Isaacson's conjecture -- Godel's second theorem for PA -- The derivability conditions -- Deriving the derivability conditions -- Reflections -- Interlude: about the second theorem -- Recursive functions -- Undecidability and incompleteness -- Turing machines -- Turing machines and recursiveness -- Halting problems -- The church-turing thesis -- Proving the thesis Gödel, Kurt Gödel numbers Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd |
subject_GND | (DE-588)4021417-5 (DE-588)4151278-9 |
title | An introduction to Gödel's Theorems |
title_auth | An introduction to Gödel's Theorems |
title_exact_search | An introduction to Gödel's Theorems |
title_full | An introduction to Gödel's Theorems Peter Smith |
title_fullStr | An introduction to Gödel's Theorems Peter Smith |
title_full_unstemmed | An introduction to Gödel's Theorems Peter Smith |
title_short | An introduction to Gödel's Theorems |
title_sort | an introduction to godel s theorems |
topic | Gödel, Kurt Gödel numbers Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd |
topic_facet | Gödel, Kurt Gödel numbers Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz Einführung |
url | https://doi.org/10.1017/CBO9780511800962 |
work_keys_str_mv | AT smithpeter anintroductiontogodelstheorems |