An introduction to Gödel's theorems:
In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Ausgabe: | Second edition |
Schriftenreihe: | Cambridge introductions to philosophy
|
Schlagworte: | |
Online-Zugang: | UBM01 UER01 Volltext |
Zusammenfassung: | In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book - extensively rewritten for its second edition - will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (xvi, 388 Seiten) |
ISBN: | 9781139149105 |
DOI: | 10.1017/CBO9781139149105 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043919628 | ||
003 | DE-604 | ||
005 | 20220926 | ||
007 | cr|uuu---uuuuu | ||
008 | 161202s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781139149105 |c Online |9 978-1-139-14910-5 | ||
024 | 7 | |a 10.1017/CBO9781139149105 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139149105 | ||
035 | |a (OCoLC)971456935 | ||
035 | |a (DE-599)BVBBV043919628 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-19 | ||
082 | 0 | |a 511.3 |2 23 | |
084 | |a CI 2305 |0 (DE-625)18393:11798 |2 rvk | ||
084 | |a CC 2000 |0 (DE-625)17606: |2 rvk | ||
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Smith, Peter |d 1944- |e Verfasser |0 (DE-588)173658121 |4 aut | |
245 | 1 | 0 | |a An introduction to Gödel's theorems |c Peter Smith |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 Online-Ressource (xvi, 388 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge introductions to philosophy | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book - extensively rewritten for its second edition - will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic | ||
600 | 1 | 4 | |a Gödel, Kurt |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 0 | 7 | |a Gödelscher Unvollständigkeitssatz |0 (DE-588)4021417-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-903 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Gödelscher Unvollständigkeitssatz |0 (DE-588)4021417-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-107-02284-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-107-60675-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139149105 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029328711 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139149105 |l UBM01 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139149105 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176839361429504 |
---|---|
any_adam_object | |
author | Smith, Peter 1944- |
author_GND | (DE-588)173658121 |
author_facet | Smith, Peter 1944- |
author_role | aut |
author_sort | Smith, Peter 1944- |
author_variant | p s ps |
building | Verbundindex |
bvnumber | BV043919628 |
classification_rvk | CI 2305 CC 2000 CC 2600 SK 130 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139149105 (OCoLC)971456935 (DE-599)BVBBV043919628 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
doi_str_mv | 10.1017/CBO9781139149105 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03285nmm a2200553zc 4500</leader><controlfield tag="001">BV043919628</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220926 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139149105</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-14910-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139149105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139149105</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)971456935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043919628</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CI 2305</subfield><subfield code="0">(DE-625)18393:11798</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2000</subfield><subfield code="0">(DE-625)17606:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Peter</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173658121</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to Gödel's theorems</subfield><subfield code="c">Peter Smith</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 388 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge introductions to philosophy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book - extensively rewritten for its second edition - will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Gödel, Kurt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-903</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-107-02284-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-107-60675-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139149105</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029328711</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139149105</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139149105</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-903 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043919628 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:38:33Z |
institution | BVB |
isbn | 9781139149105 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029328711 |
oclc_num | 971456935 |
open_access_boolean | |
owner | DE-29 DE-19 DE-BY-UBM |
owner_facet | DE-29 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xvi, 388 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO UBM_PDA_CBO_Kauf ZDB-20-CBO UER_PDA_CBO_Kauf |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge introductions to philosophy |
spelling | Smith, Peter 1944- Verfasser (DE-588)173658121 aut An introduction to Gödel's theorems Peter Smith Second edition Cambridge Cambridge University Press 2013 1 Online-Ressource (xvi, 388 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge introductions to philosophy Title from publisher's bibliographic system (viewed on 05 Oct 2015) In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book - extensively rewritten for its second edition - will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic Gödel, Kurt Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd rswk-swf 1\p (DE-588)4151278-903 Einführung gnd-content Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 s 2\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-1-107-02284-3 Erscheint auch als Druck-Ausgabe, Paperback 978-1-107-60675-3 https://doi.org/10.1017/CBO9781139149105 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Smith, Peter 1944- An introduction to Gödel's theorems Gödel, Kurt Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd |
subject_GND | (DE-588)4021417-5 (DE-588)4151278-903 |
title | An introduction to Gödel's theorems |
title_auth | An introduction to Gödel's theorems |
title_exact_search | An introduction to Gödel's theorems |
title_full | An introduction to Gödel's theorems Peter Smith |
title_fullStr | An introduction to Gödel's theorems Peter Smith |
title_full_unstemmed | An introduction to Gödel's theorems Peter Smith |
title_short | An introduction to Gödel's theorems |
title_sort | an introduction to godel s theorems |
topic | Gödel, Kurt Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd |
topic_facet | Gödel, Kurt Logic, Symbolic and mathematical Gödelscher Unvollständigkeitssatz Einführung |
url | https://doi.org/10.1017/CBO9781139149105 |
work_keys_str_mv | AT smithpeter anintroductiontogodelstheorems |