Causality in a social world: moderation, meditation and spill-over
Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
West Sussex
Wiley
2015
|
Schlagworte: | |
Online-Zugang: | FRO01 UBG01 Volltext |
Zusammenfassung: | Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 online resource |
ISBN: | 1119030633 1119030641 9781119030638 9781119030645 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043896930 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161124s2015 |||| o||u| ||||||eng d | ||
020 | |a 1119030633 |9 1-119-03063-3 | ||
020 | |a 1119030641 |9 1-119-03064-1 | ||
020 | |a 9781119030638 |9 978-1-119-03063-8 | ||
020 | |a 9781119030645 |c Online |9 978-1-119-03064-5 | ||
035 | |a (ZDB-35-WIC)ocn911266364 | ||
035 | |a (OCoLC)913025795 | ||
035 | |a (DE-599)BVBBV043896930 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-861 | ||
082 | 0 | |a 122 | |
084 | |a MR 2100 |0 (DE-625)123488: |2 rvk | ||
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
100 | 1 | |a Hong, Guanglei |4 aut | |
245 | 1 | 0 | |a Causality in a social world |b moderation, meditation and spill-over |c Guanglei Hong |
264 | 1 | |a West Sussex |b Wiley |c 2015 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
505 | 8 | |a Title Page; Copyright Page; Contents; Preface; Part I Overview; Chapter 1 Introduction; 1.1 Concepts of moderation, mediation, and spill-over; 1.1.1 Moderated treatment effects; 1.1.2 Mediated treatment effects; 1.1.3 Spill-over effects of a treatment; 1.2 Weighting methods for causal inference; 1.3 Objectives and organization of the book; 1.4 How is this book situated among other publications on related topics?; References; Chapter 2 Review of causal inference concepts and methods; 2.1 Causal inference theory; 2.1.1 Attributes versus causes | |
505 | 8 | |a 2.1.2 Potential outcomes and individual-specific causal effects2.1.3 Inference about population average causal effects; 2.1.3.1 Prima facie effect; 2.1.3.2 Ignorability assumption; 2.2 Applications to Lordś paradox and Simpsonś paradox; 2.2.1 Lordś paradox; 2.2.2 Simpsonś paradox; 2.3 Identification and estimation; 2.3.1 Selection bias; 2.3.2 Sampling bias; 2.3.3 Estimation efficiency; Appendix 2.1: Potential bias in a prima facie effect; Appendix 2.2: Application of the causal inference theory to Lord's paradox; References | |
505 | 8 | |a Chapter 3 Review of causal inference designs and analytic methods3.1 Experimental designs; 3.1.1 Completely randomized designs; 3.1.2 Randomized block designs; 3.1.3 Covariance adjustment for improving efficiency; 3.1.4 Multilevel experimental designs; 3.2 Quasiexperimental designs; 3.2.1 Nonequivalent comparison group designs; 3.2.2 Other quasiexperimental designs; 3.3 Statistical adjustment methods; 3.3.1 ANCOVA and multiple regression; 3.3.1.1 ANCOVA for removing selection bias; 3.3.1.2 Potential pitfalls of ANCOVA with a vast between-group difference | |
505 | 8 | |a 3.3.1.3 Bias due to model misspecification3.3.2 Matching and stratification; 3.3.3 Other statistical adjustment methods; 3.3.3.1 The IV method; 3.3.3.2 DID analysis; 3.4 Propensity score; 3.4.1 What is a propensity score?; 3.4.2 Balancing property of the propensity score; 3.4.3 Pooling conditional treatment effect estimate: Matching, stratification, and covariance adjustment; 3.4.3.1 Propensity score matching; 3.4.3.2 Propensity score stratification; 3.4.3.3 Covariance adjustment for the propensity score; 3.4.3.4 Sensitivity analysis | |
505 | 8 | |a Appendix 3.A: Potential bias due to the omission of treatment-by-covariate interactionAppendix 3.B: Variable selection for the propensity score model; References; Chapter 4 Adjustment for selection bias through weighting; 4.1 Weighted estimation of population parameters in survey sampling; 4.1.1 Simple random sample; 4.1.2 Proportionate sample; 4.1.3 Disproportionate sample; 4.2 Weighting adjustment for selection bias in causal inference; 4.2.1 Experimental result; 4.2.2 Quasiexperimental result; 4.2.3 Sample weight for bias removal; 4.2.4 IPTW for bias removal; 4.3 MMWS | |
520 | |a Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in | ||
650 | 7 | |a PHILOSOPHY / Epistemology |2 bisacsh | |
650 | 4 | |a Gesellschaft | |
650 | 4 | |a Causation / Social aspects | |
650 | 0 | 7 | |a Empirische Sozialforschung |0 (DE-588)4014606-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methodologie |0 (DE-588)4139716-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kausalanalyse |0 (DE-588)4163511-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Empirische Sozialforschung |0 (DE-588)4014606-6 |D s |
689 | 0 | 1 | |a Kausalanalyse |0 (DE-588)4163511-5 |D s |
689 | 0 | 2 | |a Methodologie |0 (DE-588)4139716-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-118-33256-6 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029306284 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638 |l UBG01 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176797902831616 |
---|---|
any_adam_object | |
author | Hong, Guanglei |
author_facet | Hong, Guanglei |
author_role | aut |
author_sort | Hong, Guanglei |
author_variant | g h gh |
building | Verbundindex |
bvnumber | BV043896930 |
classification_rvk | MR 2100 QH 234 |
collection | ZDB-35-WIC |
contents | Title Page; Copyright Page; Contents; Preface; Part I Overview; Chapter 1 Introduction; 1.1 Concepts of moderation, mediation, and spill-over; 1.1.1 Moderated treatment effects; 1.1.2 Mediated treatment effects; 1.1.3 Spill-over effects of a treatment; 1.2 Weighting methods for causal inference; 1.3 Objectives and organization of the book; 1.4 How is this book situated among other publications on related topics?; References; Chapter 2 Review of causal inference concepts and methods; 2.1 Causal inference theory; 2.1.1 Attributes versus causes 2.1.2 Potential outcomes and individual-specific causal effects2.1.3 Inference about population average causal effects; 2.1.3.1 Prima facie effect; 2.1.3.2 Ignorability assumption; 2.2 Applications to Lordś paradox and Simpsonś paradox; 2.2.1 Lordś paradox; 2.2.2 Simpsonś paradox; 2.3 Identification and estimation; 2.3.1 Selection bias; 2.3.2 Sampling bias; 2.3.3 Estimation efficiency; Appendix 2.1: Potential bias in a prima facie effect; Appendix 2.2: Application of the causal inference theory to Lord's paradox; References Chapter 3 Review of causal inference designs and analytic methods3.1 Experimental designs; 3.1.1 Completely randomized designs; 3.1.2 Randomized block designs; 3.1.3 Covariance adjustment for improving efficiency; 3.1.4 Multilevel experimental designs; 3.2 Quasiexperimental designs; 3.2.1 Nonequivalent comparison group designs; 3.2.2 Other quasiexperimental designs; 3.3 Statistical adjustment methods; 3.3.1 ANCOVA and multiple regression; 3.3.1.1 ANCOVA for removing selection bias; 3.3.1.2 Potential pitfalls of ANCOVA with a vast between-group difference 3.3.1.3 Bias due to model misspecification3.3.2 Matching and stratification; 3.3.3 Other statistical adjustment methods; 3.3.3.1 The IV method; 3.3.3.2 DID analysis; 3.4 Propensity score; 3.4.1 What is a propensity score?; 3.4.2 Balancing property of the propensity score; 3.4.3 Pooling conditional treatment effect estimate: Matching, stratification, and covariance adjustment; 3.4.3.1 Propensity score matching; 3.4.3.2 Propensity score stratification; 3.4.3.3 Covariance adjustment for the propensity score; 3.4.3.4 Sensitivity analysis Appendix 3.A: Potential bias due to the omission of treatment-by-covariate interactionAppendix 3.B: Variable selection for the propensity score model; References; Chapter 4 Adjustment for selection bias through weighting; 4.1 Weighted estimation of population parameters in survey sampling; 4.1.1 Simple random sample; 4.1.2 Proportionate sample; 4.1.3 Disproportionate sample; 4.2 Weighting adjustment for selection bias in causal inference; 4.2.1 Experimental result; 4.2.2 Quasiexperimental result; 4.2.3 Sample weight for bias removal; 4.2.4 IPTW for bias removal; 4.3 MMWS |
ctrlnum | (ZDB-35-WIC)ocn911266364 (OCoLC)913025795 (DE-599)BVBBV043896930 |
dewey-full | 122 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 122 - Causation |
dewey-raw | 122 |
dewey-search | 122 |
dewey-sort | 3122 |
dewey-tens | 120 - Epistemology, causation, humankind |
discipline | Soziologie Philosophie Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05661nmm a2200625zc 4500</leader><controlfield tag="001">BV043896930</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161124s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119030633</subfield><subfield code="9">1-119-03063-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119030641</subfield><subfield code="9">1-119-03064-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119030638</subfield><subfield code="9">978-1-119-03063-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119030645</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-119-03064-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocn911266364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)913025795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043896930</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">122</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2100</subfield><subfield code="0">(DE-625)123488:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Guanglei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Causality in a social world</subfield><subfield code="b">moderation, meditation and spill-over</subfield><subfield code="c">Guanglei Hong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">West Sussex</subfield><subfield code="b">Wiley</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Title Page; Copyright Page; Contents; Preface; Part I Overview; Chapter 1 Introduction; 1.1 Concepts of moderation, mediation, and spill-over; 1.1.1 Moderated treatment effects; 1.1.2 Mediated treatment effects; 1.1.3 Spill-over effects of a treatment; 1.2 Weighting methods for causal inference; 1.3 Objectives and organization of the book; 1.4 How is this book situated among other publications on related topics?; References; Chapter 2 Review of causal inference concepts and methods; 2.1 Causal inference theory; 2.1.1 Attributes versus causes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.2 Potential outcomes and individual-specific causal effects2.1.3 Inference about population average causal effects; 2.1.3.1 Prima facie effect; 2.1.3.2 Ignorability assumption; 2.2 Applications to Lordś paradox and Simpsonś paradox; 2.2.1 Lordś paradox; 2.2.2 Simpsonś paradox; 2.3 Identification and estimation; 2.3.1 Selection bias; 2.3.2 Sampling bias; 2.3.3 Estimation efficiency; Appendix 2.1: Potential bias in a prima facie effect; Appendix 2.2: Application of the causal inference theory to Lord's paradox; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3 Review of causal inference designs and analytic methods3.1 Experimental designs; 3.1.1 Completely randomized designs; 3.1.2 Randomized block designs; 3.1.3 Covariance adjustment for improving efficiency; 3.1.4 Multilevel experimental designs; 3.2 Quasiexperimental designs; 3.2.1 Nonequivalent comparison group designs; 3.2.2 Other quasiexperimental designs; 3.3 Statistical adjustment methods; 3.3.1 ANCOVA and multiple regression; 3.3.1.1 ANCOVA for removing selection bias; 3.3.1.2 Potential pitfalls of ANCOVA with a vast between-group difference</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.1.3 Bias due to model misspecification3.3.2 Matching and stratification; 3.3.3 Other statistical adjustment methods; 3.3.3.1 The IV method; 3.3.3.2 DID analysis; 3.4 Propensity score; 3.4.1 What is a propensity score?; 3.4.2 Balancing property of the propensity score; 3.4.3 Pooling conditional treatment effect estimate: Matching, stratification, and covariance adjustment; 3.4.3.1 Propensity score matching; 3.4.3.2 Propensity score stratification; 3.4.3.3 Covariance adjustment for the propensity score; 3.4.3.4 Sensitivity analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendix 3.A: Potential bias due to the omission of treatment-by-covariate interactionAppendix 3.B: Variable selection for the propensity score model; References; Chapter 4 Adjustment for selection bias through weighting; 4.1 Weighted estimation of population parameters in survey sampling; 4.1.1 Simple random sample; 4.1.2 Proportionate sample; 4.1.3 Disproportionate sample; 4.2 Weighting adjustment for selection bias in causal inference; 4.2.1 Experimental result; 4.2.2 Quasiexperimental result; 4.2.3 Sample weight for bias removal; 4.2.4 IPTW for bias removal; 4.3 MMWS</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PHILOSOPHY / Epistemology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gesellschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Causation / Social aspects</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Empirische Sozialforschung</subfield><subfield code="0">(DE-588)4014606-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methodologie</subfield><subfield code="0">(DE-588)4139716-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kausalanalyse</subfield><subfield code="0">(DE-588)4163511-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Empirische Sozialforschung</subfield><subfield code="0">(DE-588)4014606-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kausalanalyse</subfield><subfield code="0">(DE-588)4163511-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Methodologie</subfield><subfield code="0">(DE-588)4139716-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-118-33256-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029306284</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043896930 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:37:54Z |
institution | BVB |
isbn | 1119030633 1119030641 9781119030638 9781119030645 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029306284 |
oclc_num | 911266364 913025795 |
open_access_boolean | |
owner | DE-861 |
owner_facet | DE-861 |
physical | 1 online resource |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Wiley |
record_format | marc |
spelling | Hong, Guanglei aut Causality in a social world moderation, meditation and spill-over Guanglei Hong West Sussex Wiley 2015 1 online resource txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Title Page; Copyright Page; Contents; Preface; Part I Overview; Chapter 1 Introduction; 1.1 Concepts of moderation, mediation, and spill-over; 1.1.1 Moderated treatment effects; 1.1.2 Mediated treatment effects; 1.1.3 Spill-over effects of a treatment; 1.2 Weighting methods for causal inference; 1.3 Objectives and organization of the book; 1.4 How is this book situated among other publications on related topics?; References; Chapter 2 Review of causal inference concepts and methods; 2.1 Causal inference theory; 2.1.1 Attributes versus causes 2.1.2 Potential outcomes and individual-specific causal effects2.1.3 Inference about population average causal effects; 2.1.3.1 Prima facie effect; 2.1.3.2 Ignorability assumption; 2.2 Applications to Lordś paradox and Simpsonś paradox; 2.2.1 Lordś paradox; 2.2.2 Simpsonś paradox; 2.3 Identification and estimation; 2.3.1 Selection bias; 2.3.2 Sampling bias; 2.3.3 Estimation efficiency; Appendix 2.1: Potential bias in a prima facie effect; Appendix 2.2: Application of the causal inference theory to Lord's paradox; References Chapter 3 Review of causal inference designs and analytic methods3.1 Experimental designs; 3.1.1 Completely randomized designs; 3.1.2 Randomized block designs; 3.1.3 Covariance adjustment for improving efficiency; 3.1.4 Multilevel experimental designs; 3.2 Quasiexperimental designs; 3.2.1 Nonequivalent comparison group designs; 3.2.2 Other quasiexperimental designs; 3.3 Statistical adjustment methods; 3.3.1 ANCOVA and multiple regression; 3.3.1.1 ANCOVA for removing selection bias; 3.3.1.2 Potential pitfalls of ANCOVA with a vast between-group difference 3.3.1.3 Bias due to model misspecification3.3.2 Matching and stratification; 3.3.3 Other statistical adjustment methods; 3.3.3.1 The IV method; 3.3.3.2 DID analysis; 3.4 Propensity score; 3.4.1 What is a propensity score?; 3.4.2 Balancing property of the propensity score; 3.4.3 Pooling conditional treatment effect estimate: Matching, stratification, and covariance adjustment; 3.4.3.1 Propensity score matching; 3.4.3.2 Propensity score stratification; 3.4.3.3 Covariance adjustment for the propensity score; 3.4.3.4 Sensitivity analysis Appendix 3.A: Potential bias due to the omission of treatment-by-covariate interactionAppendix 3.B: Variable selection for the propensity score model; References; Chapter 4 Adjustment for selection bias through weighting; 4.1 Weighted estimation of population parameters in survey sampling; 4.1.1 Simple random sample; 4.1.2 Proportionate sample; 4.1.3 Disproportionate sample; 4.2 Weighting adjustment for selection bias in causal inference; 4.2.1 Experimental result; 4.2.2 Quasiexperimental result; 4.2.3 Sample weight for bias removal; 4.2.4 IPTW for bias removal; 4.3 MMWS Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in PHILOSOPHY / Epistemology bisacsh Gesellschaft Causation / Social aspects Empirische Sozialforschung (DE-588)4014606-6 gnd rswk-swf Methodologie (DE-588)4139716-2 gnd rswk-swf Kausalanalyse (DE-588)4163511-5 gnd rswk-swf Empirische Sozialforschung (DE-588)4014606-6 s Kausalanalyse (DE-588)4163511-5 s Methodologie (DE-588)4139716-2 s 1\p DE-604 Erscheint auch als Druckausgabe 978-1-118-33256-6 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hong, Guanglei Causality in a social world moderation, meditation and spill-over Title Page; Copyright Page; Contents; Preface; Part I Overview; Chapter 1 Introduction; 1.1 Concepts of moderation, mediation, and spill-over; 1.1.1 Moderated treatment effects; 1.1.2 Mediated treatment effects; 1.1.3 Spill-over effects of a treatment; 1.2 Weighting methods for causal inference; 1.3 Objectives and organization of the book; 1.4 How is this book situated among other publications on related topics?; References; Chapter 2 Review of causal inference concepts and methods; 2.1 Causal inference theory; 2.1.1 Attributes versus causes 2.1.2 Potential outcomes and individual-specific causal effects2.1.3 Inference about population average causal effects; 2.1.3.1 Prima facie effect; 2.1.3.2 Ignorability assumption; 2.2 Applications to Lordś paradox and Simpsonś paradox; 2.2.1 Lordś paradox; 2.2.2 Simpsonś paradox; 2.3 Identification and estimation; 2.3.1 Selection bias; 2.3.2 Sampling bias; 2.3.3 Estimation efficiency; Appendix 2.1: Potential bias in a prima facie effect; Appendix 2.2: Application of the causal inference theory to Lord's paradox; References Chapter 3 Review of causal inference designs and analytic methods3.1 Experimental designs; 3.1.1 Completely randomized designs; 3.1.2 Randomized block designs; 3.1.3 Covariance adjustment for improving efficiency; 3.1.4 Multilevel experimental designs; 3.2 Quasiexperimental designs; 3.2.1 Nonequivalent comparison group designs; 3.2.2 Other quasiexperimental designs; 3.3 Statistical adjustment methods; 3.3.1 ANCOVA and multiple regression; 3.3.1.1 ANCOVA for removing selection bias; 3.3.1.2 Potential pitfalls of ANCOVA with a vast between-group difference 3.3.1.3 Bias due to model misspecification3.3.2 Matching and stratification; 3.3.3 Other statistical adjustment methods; 3.3.3.1 The IV method; 3.3.3.2 DID analysis; 3.4 Propensity score; 3.4.1 What is a propensity score?; 3.4.2 Balancing property of the propensity score; 3.4.3 Pooling conditional treatment effect estimate: Matching, stratification, and covariance adjustment; 3.4.3.1 Propensity score matching; 3.4.3.2 Propensity score stratification; 3.4.3.3 Covariance adjustment for the propensity score; 3.4.3.4 Sensitivity analysis Appendix 3.A: Potential bias due to the omission of treatment-by-covariate interactionAppendix 3.B: Variable selection for the propensity score model; References; Chapter 4 Adjustment for selection bias through weighting; 4.1 Weighted estimation of population parameters in survey sampling; 4.1.1 Simple random sample; 4.1.2 Proportionate sample; 4.1.3 Disproportionate sample; 4.2 Weighting adjustment for selection bias in causal inference; 4.2.1 Experimental result; 4.2.2 Quasiexperimental result; 4.2.3 Sample weight for bias removal; 4.2.4 IPTW for bias removal; 4.3 MMWS PHILOSOPHY / Epistemology bisacsh Gesellschaft Causation / Social aspects Empirische Sozialforschung (DE-588)4014606-6 gnd Methodologie (DE-588)4139716-2 gnd Kausalanalyse (DE-588)4163511-5 gnd |
subject_GND | (DE-588)4014606-6 (DE-588)4139716-2 (DE-588)4163511-5 |
title | Causality in a social world moderation, meditation and spill-over |
title_auth | Causality in a social world moderation, meditation and spill-over |
title_exact_search | Causality in a social world moderation, meditation and spill-over |
title_full | Causality in a social world moderation, meditation and spill-over Guanglei Hong |
title_fullStr | Causality in a social world moderation, meditation and spill-over Guanglei Hong |
title_full_unstemmed | Causality in a social world moderation, meditation and spill-over Guanglei Hong |
title_short | Causality in a social world |
title_sort | causality in a social world moderation meditation and spill over |
title_sub | moderation, meditation and spill-over |
topic | PHILOSOPHY / Epistemology bisacsh Gesellschaft Causation / Social aspects Empirische Sozialforschung (DE-588)4014606-6 gnd Methodologie (DE-588)4139716-2 gnd Kausalanalyse (DE-588)4163511-5 gnd |
topic_facet | PHILOSOPHY / Epistemology Gesellschaft Causation / Social aspects Empirische Sozialforschung Methodologie Kausalanalyse |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119030638 |
work_keys_str_mv | AT hongguanglei causalityinasocialworldmoderationmeditationandspillover |