Analytical methods for Kolmogorov equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla.
CRC Press
[2017]
|
Ausgabe: | Second edition |
Schriftenreihe: | Monographs and research notes in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben S. 547 - 562 Enthält Index |
Beschreibung: | xxxix, 566 Seiten |
ISBN: | 9781482243321 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043896678 | ||
003 | DE-604 | ||
005 | 20210505 | ||
007 | t | ||
008 | 161123s2017 |||| 00||| eng d | ||
020 | |a 9781482243321 |c hbk. |9 978-1-4822-4332-1 | ||
035 | |a (OCoLC)966675309 | ||
035 | |a (DE-599)OBVAC13294347 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-634 | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 60J25 |2 Markov processes with continuous parameter | ||
084 | |a 35B45 |2 A priori estimates | ||
084 | |a 35B65 |2 Smoothness and regularity of solutions of PDE | ||
084 | |a 35-02 |2 Research exposition (monographs, survey articles) | ||
084 | |a 60J35 |2 Transition functions, generators and resolvents | ||
084 | |a 35K15 |2 Initial value problems for second-order, parabolic equations | ||
084 | |a 47D06 |2 One-parameter semigroups and linear evolution equations | ||
084 | |a 35K65 |2 Parabolic partial differential equations of degenerate type | ||
100 | 1 | |a Lorenzi, Luca |e Verfasser |0 (DE-588)17394048X |4 aut | |
245 | 1 | 0 | |a Analytical methods for Kolmogorov equations |c Luca Lorenzi, University of Parma, Italy |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton, Fla. |b CRC Press |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xxxix, 566 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Monographs and research notes in mathematics | |
500 | |a Literaturangaben S. 547 - 562 | ||
500 | |a Enthält Index | ||
650 | 0 | 7 | |a Kolmogorovsche Differentialgleichungen |0 (DE-588)4164698-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kolmogorovsche Differentialgleichungen |0 (DE-588)4164698-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029306037&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029306037 |
Datensatz im Suchindex
_version_ | 1804176797457186816 |
---|---|
adam_text | MONOGRAPHS AND RESEARCH NOTES IN MATHEMATICS
Analytical
Methods for
Kolmogorov
Equations
Second Edition
Luca Lorenzi
University of Parma
Italy
CRC Press
Taylor amp; Francis Croup
Boca Raton London New York
CRC Press Is an Imprint of the
Taylor amp; Francis Croup, an Informa business
A CHAPMAN amp; HALL BOOK
Contents
Preface to the second edition xv
Preface to the first edition xvii
About the author xxi
Introduction xxiii
I Autonomous Kolmogorov equations 1
1 The elliptic equation and the Cauchy problem in Cb(RN)i the uniformly
elliptic case 3
1 0 Introduction 3
1 1 The elliptic equation and the resolvent R(A) 6
1 2 The Cauchy problem and the semigroup 8
1 3 The weak generator of {T(t)} 15
1 4 Analytic and non-analytic semigroups in Cb(RN) 19
1 5 The Markov process 24
1 6 The associated stochastic differential equation 26
2 One-dimensional theory 29
2 0 Introduction 29
2 1 The homogeneous equation 29
2 2 The nonhomogeneous equation 35
3 Uniqueness results, conservation of probability and maximum principles 43
3 0 Introduction 43
3 1 Conservation of probability and uniqueness 44
311 Maximum principles 45
312 The case when c=0 48
3 2 Non-uniqueness 50
4 Properties of T(t) in spaces of continuous functions 53
4 0 Introduction 53
4 1 Compactness of T(t) 54
411 The conservative case 54
412 The non-conservative case 63
4 2 On the inclusion T(t)(Cb{RN)) C Co(RN) 65
4 3 Invariance of Co(RN) 69
IX
X
Contents
5 Uniform estimates for the derivatives of the function T(t)f 73
5 0 Introduction 73
5 1 Uniform estimates 74
5 2 Some consequences 85
6 Pointwise estimates for the derivatives of the function T(t)f 91
6 0 Introduction 91
6 1 The first type of pointwise gradient estimates 92
6 2 The second type of pointwise gradient estimates 97
6 3 Further estimates when A=A+ (5, V) 104
7 Markov semigroups in Lp-spaces 107
7 0 Introduction 107
7 1 The general case 108
7 2 Schrödinger type operators: the case a 2 117
721 The semigroup (Tp(t)} and the spectrum of operator Ap 125
722 Concluding remarks 129
7 3 Schrödinger type operators: the case a 2 130
731 Concluding remarks 143
7 4 Some slightly more general operators 143
8 Estimates on the Green function 149
8 0 Introduction 149
8 1 The general case 151
811 Bibliographic remarks 158
8 2 The operator A = (1 + |x|a)A 159
8 3 The Schrödinger operator ^=A+c 168
831 The case when c is a decreasing radial potential 179
8 4 The Schrödinger operator A = (1 + |x|a)A + c when a € (0,2) 189
841A more general class of elliptic operators 195
9 The invariant measure /i and the semigroup in Lp(RN, ß) 197
9 0 Introduction 197
9 1 Existence, uniqueness and general properties 199
911 General properties and uniqueness 199
912 Existence by Khas’minskii theorem 206
913 Existence by compactness in Cb(RN) 210
914 Existence by symmetry 213
9 2 Regularity properties of invariant measures 216
921 Global L^-regularity of the density p 219
922 Global Sobolev regularity 224
9 3 Some consequences of the estimates in Chapter 6 230
9 4 Logarithmic Sobolev inequality, Poincare inequality, summability improving
properties 233
941 Concluding remarks 236
95A class of analytic semigroups in LP(RN, ß) 238
9 6 Non-analytic semigroups in LP(RN, //) 248
Contents
xi
10 The Ornstein-Uhlenbeck operator 251
10 0 Introduction 251
10 1 The formula for T(t)f 252
10 2 Properties of (T(i)} in Cb(RN) 254
10 3 The invariant measure ß and the semigroup in LP(RN: ß) 258
10 3 1 The domain of the realization of {T(t)} in LP(RN, ß) 266
10 3 2 The spectrum of Lp 273
10 3 3 Hermite polynomials 279
10 3 4 The sector of analyticity of Lp 282
10 4 The Ornstein-Uhlenbeck operator in LP(RN) 283
11 Degenerate Markov semigroups in R N 287
11 0 Introduction 287
11 1 Remarks on the assumptions and technical results 289
11 1 1 Ordering the derivatives of smooth functions 290
11 1 2 Technical results 290
11 2 Uniform estimates for Ae 295
11 3 Construction of the semigroup 304
11 3 1 Properties of the semigroup 309
11 4 Anisotropic Holder estimates 312
11 4 1 The case r=l 314
12 The Cauchy-Dirichlet problem 323
12 0 Introduction 323
12 1 Existence and uniqueness 324
12 2 Gradient estimates 328
12 21A priori gradient estimates 328
12 2 2 An auxiliary problem 331
12 2 3 Proof of Theorem 12 2 4 337
12 24A counterexample to the gradient estimates 338
13 The Cauchy-Neumann problem 341
13 0 Introduction 341
13 1 A maximum principle and a priori estimates 343
13 2 Existence and uniqueness of a classical solution to problem (13 0 1) 347
13 2 1 Proof of Theorem 13 2 5: the nonconvex case 348
13 211 Generation of analytic semigroups in Lp-spaces 351
13 212 Proof of Theorem 13 2 5 for smooth data 354
13 2 2 Proof of Theorem 13 2 5: the convex case 355
13 2 3 Proof of Theorem 13 2 5: exterior domains 356
13 3 Some properties of the semigroup (T(t)} 357
13 4 The weak generator of the semigroup and the elliptic equation (13 0 2) 359
13 5 Pointwise gradient estimates and their consequences 362
13 6 The invariant measure of the semigroup 369
Contents
xii
13 7 Final remarks 374
II Non-autonomous Kolmogorov equations 375
14 The evolution operator and the evolution semigroup in the space of
bounded and continuous functions 377
14 0 Introduction 377
14 1 The evolution operator and its continuity properties 379
14 2 Compactness of the evolution operator in Cb(M N) 385
14 3 Invariance of CbO^) 388
14 4 Gradient estimates 390
14 4 1 Schauder estimates for nonhomogeneous parabolic problems 394
14 5 The evolution semigroup {^(t)} 396
14 5 1 The weak generator G00 of ( T(£)} 397
14 5 2 An equivalent characterization of D(Goo) 398
14 5 3 The periodic case 401
15 Estimates for Green functions 403
15 0 Introduction 403
15 1 Integrability properties of Green functions 404
15 2 Kernel estimates 413
15 21A concrete application of Theorem 15 2 2 420
15 3 Concluding remarks 424
16 The evolution operator in Lp-spaces 425
16 0 Introduction 425
16 1 The evolution operator in LP(RN) 427
16 2 Evolution systems of measures 427
16 3 The evolution operator in spaces related to evolution systems of measures:
basic properties 436
16 4 Logarithmic Sobolev inequality, Poincare inequality and hypercontractivity 437
16 4 1 Logarithmic Sobolev inequality and consequences 438
16 4 2 Hypercontractivity 443
16 5 Supercontractivity and LSIe 444
16 6 Ultraboundedness 450
16 7 Ultracontractivity 453
17 The evolution semigroups and {«^(t)} in Xp-spaces 459
17 0 Introduction 459
17 1 The general case 461
17 1 1 Cores of the operator Gp 463
17 2 The periodic case 474
17 2 1 Cores 479
17 22A logarithmic Sobolev type inequality and compactness 481
18 The asymptotic behaviour of the evolution operator and the evolution
semigroup 485
18 0 Introduction 485
18 1 The general case 487
18 1 1 Exponential decay to zero 496
18 2 The periodic case 503
Contents
xiii
III Appendices 511
A Function spaces and smooth domains 513
A l Spaces of continuous or Holder continuous functions 513
A11 Isotropic spaces 513
A12 Anisotropic Holder spaces in RN 514
A 2 Parabolic Holder spaces 514
A 3 Lp- and Sobolev spaces 515
A31 The spaces J4?p,1((a,b) x R^) 516
A 4 Some properties of the distance function 519
B Basic notions of functional analysis in Banach spaces 521
B l Linear operators, spectrum and resolvent 521
B 2 Vector-valued Riemann integral 523
B 3 Some results from interpolation theory 524
C An overview of strongly continuous and analytic semigroups 529
C l Strongly continuous semigroups 529
C11 On the closure of the sum of generators of semigroups 532
C 2 Analytic semigroups 533
D PDE’s and analytic semigroups 537
DlA priori estimates 537
D 2 Classical maximum principles 542
D 3 Existence of classical solutions to PDE’s and analytic semigroups 542
Bibliography 547
Index
|
any_adam_object | 1 |
author | Lorenzi, Luca |
author_GND | (DE-588)17394048X |
author_facet | Lorenzi, Luca |
author_role | aut |
author_sort | Lorenzi, Luca |
author_variant | l l ll |
building | Verbundindex |
bvnumber | BV043896678 |
classification_rvk | SK 820 |
ctrlnum | (OCoLC)966675309 (DE-599)OBVAC13294347 |
discipline | Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02012nam a2200469 c 4500</leader><controlfield tag="001">BV043896678</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210505 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161123s2017 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781482243321</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-4822-4332-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)966675309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC13294347</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J25</subfield><subfield code="2">Markov processes with continuous parameter</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35B45</subfield><subfield code="2">A priori estimates</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35B65</subfield><subfield code="2">Smoothness and regularity of solutions of PDE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35-02</subfield><subfield code="2">Research exposition (monographs, survey articles)</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J35</subfield><subfield code="2">Transition functions, generators and resolvents</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35K15</subfield><subfield code="2">Initial value problems for second-order, parabolic equations</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47D06</subfield><subfield code="2">One-parameter semigroups and linear evolution equations</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35K65</subfield><subfield code="2">Parabolic partial differential equations of degenerate type</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lorenzi, Luca</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)17394048X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical methods for Kolmogorov equations</subfield><subfield code="c">Luca Lorenzi, University of Parma, Italy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla.</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxix, 566 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs and research notes in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben S. 547 - 562</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enthält Index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kolmogorovsche Differentialgleichungen</subfield><subfield code="0">(DE-588)4164698-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kolmogorovsche Differentialgleichungen</subfield><subfield code="0">(DE-588)4164698-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029306037&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029306037</subfield></datafield></record></collection> |
id | DE-604.BV043896678 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:37:53Z |
institution | BVB |
isbn | 9781482243321 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029306037 |
oclc_num | 966675309 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-634 |
owner_facet | DE-19 DE-BY-UBM DE-634 |
physical | xxxix, 566 Seiten |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | CRC Press |
record_format | marc |
series2 | Monographs and research notes in mathematics |
spelling | Lorenzi, Luca Verfasser (DE-588)17394048X aut Analytical methods for Kolmogorov equations Luca Lorenzi, University of Parma, Italy Second edition Boca Raton, Fla. CRC Press [2017] © 2017 xxxix, 566 Seiten txt rdacontent n rdamedia nc rdacarrier Monographs and research notes in mathematics Literaturangaben S. 547 - 562 Enthält Index Kolmogorovsche Differentialgleichungen (DE-588)4164698-8 gnd rswk-swf Kolmogorovsche Differentialgleichungen (DE-588)4164698-8 s DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029306037&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lorenzi, Luca Analytical methods for Kolmogorov equations Kolmogorovsche Differentialgleichungen (DE-588)4164698-8 gnd |
subject_GND | (DE-588)4164698-8 |
title | Analytical methods for Kolmogorov equations |
title_auth | Analytical methods for Kolmogorov equations |
title_exact_search | Analytical methods for Kolmogorov equations |
title_full | Analytical methods for Kolmogorov equations Luca Lorenzi, University of Parma, Italy |
title_fullStr | Analytical methods for Kolmogorov equations Luca Lorenzi, University of Parma, Italy |
title_full_unstemmed | Analytical methods for Kolmogorov equations Luca Lorenzi, University of Parma, Italy |
title_short | Analytical methods for Kolmogorov equations |
title_sort | analytical methods for kolmogorov equations |
topic | Kolmogorovsche Differentialgleichungen (DE-588)4164698-8 gnd |
topic_facet | Kolmogorovsche Differentialgleichungen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029306037&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lorenziluca analyticalmethodsforkolmogorovequations |