Exact Finite-Difference Schemes:
Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport prob...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin ;Boston
De Gruyter
[2016]
|
Schlagworte: | |
Online-Zugang: | FKE01 FLA01 TUM01 FHA01 UPA01 FAW01 FAB01 FCO01 URL des Erstveröffentlichers |
Zusammenfassung: | Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) |
Beschreibung: | 1 online resource (246pages) |
ISBN: | 9783110491326 9783110489644 |
DOI: | 10.1515/9783110491326 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043867776 | ||
003 | DE-604 | ||
005 | 20170328 | ||
007 | cr|uuu---uuuuu | ||
008 | 161109s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783110491326 |9 978-3-11-049132-6 | ||
020 | |a 9783110489644 |c print |9 978-3-11-048964-4 | ||
024 | 7 | |a 10.1515/9783110491326 |2 doi | |
035 | |a (ZDB-23-DGG)9783110491326 | ||
035 | |a (OCoLC)960708576 | ||
035 | |a (DE-599)BVBBV043867776 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-91 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 515.62 |2 23 | |
245 | 1 | 0 | |a Exact Finite-Difference Schemes |c Sergey Lemeshevsky, Piotr Matus, Dmitriy Poliakov |
264 | 1 | |a Berlin ;Boston |b De Gruyter |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 online resource (246pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) | ||
520 | |a Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations | ||
546 | |a In English | ||
650 | 4 | |a Gewöhnliche Differentialgleichung | |
650 | 4 | |a Numerik | |
650 | 0 | 7 | |a Finite-Differenzen-Methode |0 (DE-588)4194626-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finite-Differenzen-Methode |0 (DE-588)4194626-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Lemeshevsky, Sergey |e Sonstige |0 (DE-588)1115256017 |4 oth | |
700 | 1 | |a Matus, Piotr |e Sonstige |0 (DE-588)1115256289 |4 oth | |
700 | 1 | |a Poliakov, Dmitriy |e Sonstige |0 (DE-588)1115256394 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110491326 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029277715 | ||
966 | e | |u https://doi.org/10.1515/9783110491326 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110491326 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110491326 |l TUM01 |p ZDB-23-DMP |q TUM_DMP_2016 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110491326 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110491326 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110491326 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110491326 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110491326 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176753516609536 |
---|---|
any_adam_object | |
author_GND | (DE-588)1115256017 (DE-588)1115256289 (DE-588)1115256394 |
building | Verbundindex |
bvnumber | BV043867776 |
collection | ZDB-23-DGG ZDB-23-DMP |
ctrlnum | (ZDB-23-DGG)9783110491326 (OCoLC)960708576 (DE-599)BVBBV043867776 |
dewey-full | 515.62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.62 |
dewey-search | 515.62 |
dewey-sort | 3515.62 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110491326 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03002nmm a2200553zc 4500</leader><controlfield tag="001">BV043867776</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170328 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161109s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110491326</subfield><subfield code="9">978-3-11-049132-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110489644</subfield><subfield code="c">print</subfield><subfield code="9">978-3-11-048964-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110491326</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110491326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960708576</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043867776</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.62</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact Finite-Difference Schemes</subfield><subfield code="c">Sergey Lemeshevsky, Piotr Matus, Dmitriy Poliakov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (246pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gewöhnliche Differentialgleichung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemeshevsky, Sergey</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1115256017</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matus, Piotr</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1115256289</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poliakov, Dmitriy</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1115256394</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029277715</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMP</subfield><subfield code="q">TUM_DMP_2016</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110491326</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043867776 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:37:12Z |
institution | BVB |
isbn | 9783110491326 9783110489644 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029277715 |
oclc_num | 960708576 |
open_access_boolean | |
owner | DE-859 DE-860 DE-91 DE-BY-TUM DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-91 DE-BY-TUM DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
physical | 1 online resource (246pages) |
psigel | ZDB-23-DGG ZDB-23-DMP ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMP TUM_DMP_2016 ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter |
record_format | marc |
spelling | Exact Finite-Difference Schemes Sergey Lemeshevsky, Piotr Matus, Dmitriy Poliakov Berlin ;Boston De Gruyter [2016] © 2016 1 online resource (246pages) txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations In English Gewöhnliche Differentialgleichung Numerik Finite-Differenzen-Methode (DE-588)4194626-1 gnd rswk-swf Finite-Differenzen-Methode (DE-588)4194626-1 s DE-604 Lemeshevsky, Sergey Sonstige (DE-588)1115256017 oth Matus, Piotr Sonstige (DE-588)1115256289 oth Poliakov, Dmitriy Sonstige (DE-588)1115256394 oth https://doi.org/10.1515/9783110491326 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Exact Finite-Difference Schemes Gewöhnliche Differentialgleichung Numerik Finite-Differenzen-Methode (DE-588)4194626-1 gnd |
subject_GND | (DE-588)4194626-1 |
title | Exact Finite-Difference Schemes |
title_auth | Exact Finite-Difference Schemes |
title_exact_search | Exact Finite-Difference Schemes |
title_full | Exact Finite-Difference Schemes Sergey Lemeshevsky, Piotr Matus, Dmitriy Poliakov |
title_fullStr | Exact Finite-Difference Schemes Sergey Lemeshevsky, Piotr Matus, Dmitriy Poliakov |
title_full_unstemmed | Exact Finite-Difference Schemes Sergey Lemeshevsky, Piotr Matus, Dmitriy Poliakov |
title_short | Exact Finite-Difference Schemes |
title_sort | exact finite difference schemes |
topic | Gewöhnliche Differentialgleichung Numerik Finite-Differenzen-Methode (DE-588)4194626-1 gnd |
topic_facet | Gewöhnliche Differentialgleichung Numerik Finite-Differenzen-Methode |
url | https://doi.org/10.1515/9783110491326 |
work_keys_str_mv | AT lemeshevskysergey exactfinitedifferenceschemes AT matuspiotr exactfinitedifferenceschemes AT poliakovdmitriy exactfinitedifferenceschemes |