The Hodge-Laplacian: boundary value problems on Riemannian manifolds
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2016]
|
Schriftenreihe: | De Gruyter studies in mathematics
64 |
Schlagworte: | |
Online-Zugang: | FAW01 FHA01 FKE01 FLA01 TUM01 UPA01 FAB01 FCO01 Volltext |
Zusammenfassung: | The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains.Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) |
Beschreibung: | 1 online resource (528pages) |
ISBN: | 9783110484380 9783110482669 |
DOI: | 10.1515/9783110484380 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043867770 | ||
003 | DE-604 | ||
005 | 20190830 | ||
007 | cr|uuu---uuuuu | ||
008 | 161109s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783110484380 |9 978-3-11-048438-0 | ||
020 | |a 9783110482669 |c print |9 978-3-11-048266-9 | ||
024 | 7 | |a 10.1515/9783110484380 |2 doi | |
035 | |a (ZDB-23-DGG)9783110484380 | ||
035 | |a (OCoLC)960041744 | ||
035 | |a (DE-599)BVBBV043867770 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-91 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 516.373 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a MAT 355f |2 stub | ||
100 | 1 | |a Mitrea, Dorina |d 1965- |0 (DE-588)140077642 |4 aut | |
245 | 1 | 0 | |a The Hodge-Laplacian |b boundary value problems on Riemannian manifolds |c Dorina Mitrea, Irina Mitrea, Marius Mitrea, Michael Taylor |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 online resource (528pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics |v 64 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) | ||
520 | |a The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains.Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex | ||
546 | |a In English | ||
650 | 4 | |a Laplace-Operator | |
650 | 4 | |a Riemannscher Raum | |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Laplace-Operator |0 (DE-588)4166772-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laplace-Operator |0 (DE-588)4166772-4 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 2 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mitrea, Irina |4 aut | |
700 | 1 | |a Mitrea, Marius |0 (DE-588)1026933625 |4 aut | |
700 | 1 | |a Taylor, Michael Eugene |d 1946- |0 (DE-588)123980119 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-048266-9 |
830 | 0 | |a De Gruyter studies in mathematics |v 64 |w (DE-604)BV044966417 |9 64 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110484380 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-GSM |a ZDB-23-DGG |a ZDB-23-DMI | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029277709 | ||
966 | e | |u https://doi.org/10.1515/9783110484380 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110484380 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110484380 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110484380 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110484380 |l TUM01 |p ZDB-23-DMI |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110484380 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110484380 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110484380 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176753506123776 |
---|---|
any_adam_object | |
author | Mitrea, Dorina 1965- Mitrea, Irina Mitrea, Marius Taylor, Michael Eugene 1946- |
author_GND | (DE-588)140077642 (DE-588)1026933625 (DE-588)123980119 |
author_facet | Mitrea, Dorina 1965- Mitrea, Irina Mitrea, Marius Taylor, Michael Eugene 1946- |
author_role | aut aut aut aut |
author_sort | Mitrea, Dorina 1965- |
author_variant | d m dm i m im m m mm m e t me met |
building | Verbundindex |
bvnumber | BV043867770 |
classification_rvk | SK 540 |
classification_tum | MAT 355f |
collection | ZDB-23-GSM ZDB-23-DGG ZDB-23-DMI |
ctrlnum | (ZDB-23-DGG)9783110484380 (OCoLC)960041744 (DE-599)BVBBV043867770 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110484380 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04790nmm a2200673zcb4500</leader><controlfield tag="001">BV043867770</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190830 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161109s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110484380</subfield><subfield code="9">978-3-11-048438-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110482669</subfield><subfield code="c">print</subfield><subfield code="9">978-3-11-048266-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110484380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110484380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960041744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043867770</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.373</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 355f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mitrea, Dorina</subfield><subfield code="d">1965-</subfield><subfield code="0">(DE-588)140077642</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Hodge-Laplacian</subfield><subfield code="b">boundary value problems on Riemannian manifolds</subfield><subfield code="c">Dorina Mitrea, Irina Mitrea, Marius Mitrea, Michael Taylor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (528pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">64</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains.Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace-Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannscher Raum</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laplace-Operator</subfield><subfield code="0">(DE-588)4166772-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laplace-Operator</subfield><subfield code="0">(DE-588)4166772-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitrea, Irina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitrea, Marius</subfield><subfield code="0">(DE-588)1026933625</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Michael Eugene</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)123980119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-048266-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">64</subfield><subfield code="w">(DE-604)BV044966417</subfield><subfield code="9">64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-GSM</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMI</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029277709</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMI</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110484380</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043867770 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:37:12Z |
institution | BVB |
isbn | 9783110484380 9783110482669 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029277709 |
oclc_num | 960041744 |
open_access_boolean | |
owner | DE-859 DE-860 DE-91 DE-BY-TUM DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-91 DE-BY-TUM DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 online resource (528pages) |
psigel | ZDB-23-GSM ZDB-23-DGG ZDB-23-DMI ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMI TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter studies in mathematics |
series2 | De Gruyter studies in mathematics |
spelling | Mitrea, Dorina 1965- (DE-588)140077642 aut The Hodge-Laplacian boundary value problems on Riemannian manifolds Dorina Mitrea, Irina Mitrea, Marius Mitrea, Michael Taylor Berlin ; Boston De Gruyter [2016] © 2016 1 online resource (528pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 64 Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains.Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex In English Laplace-Operator Riemannscher Raum Randwertproblem (DE-588)4048395-2 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Laplace-Operator (DE-588)4166772-4 gnd rswk-swf Laplace-Operator (DE-588)4166772-4 s Randwertproblem (DE-588)4048395-2 s Riemannscher Raum (DE-588)4128295-4 s DE-604 Mitrea, Irina aut Mitrea, Marius (DE-588)1026933625 aut Taylor, Michael Eugene 1946- (DE-588)123980119 aut Erscheint auch als Druck-Ausgabe 978-3-11-048266-9 De Gruyter studies in mathematics 64 (DE-604)BV044966417 64 https://doi.org/10.1515/9783110484380 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mitrea, Dorina 1965- Mitrea, Irina Mitrea, Marius Taylor, Michael Eugene 1946- The Hodge-Laplacian boundary value problems on Riemannian manifolds De Gruyter studies in mathematics Laplace-Operator Riemannscher Raum Randwertproblem (DE-588)4048395-2 gnd Riemannscher Raum (DE-588)4128295-4 gnd Laplace-Operator (DE-588)4166772-4 gnd |
subject_GND | (DE-588)4048395-2 (DE-588)4128295-4 (DE-588)4166772-4 |
title | The Hodge-Laplacian boundary value problems on Riemannian manifolds |
title_auth | The Hodge-Laplacian boundary value problems on Riemannian manifolds |
title_exact_search | The Hodge-Laplacian boundary value problems on Riemannian manifolds |
title_full | The Hodge-Laplacian boundary value problems on Riemannian manifolds Dorina Mitrea, Irina Mitrea, Marius Mitrea, Michael Taylor |
title_fullStr | The Hodge-Laplacian boundary value problems on Riemannian manifolds Dorina Mitrea, Irina Mitrea, Marius Mitrea, Michael Taylor |
title_full_unstemmed | The Hodge-Laplacian boundary value problems on Riemannian manifolds Dorina Mitrea, Irina Mitrea, Marius Mitrea, Michael Taylor |
title_short | The Hodge-Laplacian |
title_sort | the hodge laplacian boundary value problems on riemannian manifolds |
title_sub | boundary value problems on Riemannian manifolds |
topic | Laplace-Operator Riemannscher Raum Randwertproblem (DE-588)4048395-2 gnd Riemannscher Raum (DE-588)4128295-4 gnd Laplace-Operator (DE-588)4166772-4 gnd |
topic_facet | Laplace-Operator Riemannscher Raum Randwertproblem |
url | https://doi.org/10.1515/9783110484380 |
volume_link | (DE-604)BV044966417 |
work_keys_str_mv | AT mitreadorina thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT mitreairina thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT mitreamarius thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT taylormichaeleugene thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds |