Weak convergence of stochastic processes: with applications to statistical limit theorems
The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2016]
|
Schriftenreihe: | De Gruyter Textbook
|
Schlagworte: | |
Online-Zugang: | FHA01 FHR01 FKE01 FLA01 TUM01 UPA01 FAW01 FAB01 FCO01 Volltext |
Zusammenfassung: | The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents:Weak convergence of stochastic processesWeak convergence in metric spacesWeak convergence on C[0, 1] and D[0,∞)Central limit theorem for semi-martingales and applicationsCentral limit theorems for dependent random variablesEmpirical processBibliography |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) |
Beschreibung: | 1 Online-Ressource (148 Seiten) |
ISBN: | 9783110476316 9783110475425 9783110475456 |
DOI: | 10.1515/9783110476316 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043867760 | ||
003 | DE-604 | ||
005 | 20170513 | ||
007 | cr|uuu---uuuuu | ||
008 | 161109s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783110476316 |c Online (PDF) |9 978-3-11-047631-6 | ||
020 | |a 9783110475425 |c print |9 978-3-11-047542-5 | ||
020 | |a 9783110475456 |c Online (EPUB) |9 978-3-11-047545-6 | ||
024 | 7 | |a 10.1515/9783110476316 |2 doi | |
035 | |a (ZDB-23-DGG)9783110476316 | ||
035 | |a (OCoLC)960040342 | ||
035 | |a (DE-599)BVBBV043867760 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-91 |a DE-Aug4 |a DE-898 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 519.23 |2 23 | |
100 | 1 | |a Mandrekar, Vidyadhar |d 1939- |e Verfasser |0 (DE-588)1013611721 |4 aut | |
245 | 1 | 0 | |a Weak convergence of stochastic processes |b with applications to statistical limit theorems |c Vidyadhar S. Mandrekar |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online-Ressource (148 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Textbook | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) | ||
520 | |a The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents:Weak convergence of stochastic processesWeak convergence in metric spacesWeak convergence on C[0, 1] and D[0,∞)Central limit theorem for semi-martingales and applicationsCentral limit theorems for dependent random variablesEmpirical processBibliography | ||
546 | |a In English | ||
650 | 4 | |a Schwache Konvergenz | |
650 | 4 | |a Statistik | |
650 | 4 | |a Stochastischer Prozess | |
650 | 0 | 7 | |a Schwache Konvergenz |0 (DE-588)4180292-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zentraler Grenzwertsatz |0 (DE-588)4067618-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 1 | |a Schwache Konvergenz |0 (DE-588)4180292-5 |D s |
689 | 0 | 2 | |a Zentraler Grenzwertsatz |0 (DE-588)4067618-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110476316 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA16 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029277699 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA16 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l TUM01 |p ZDB-23-DGG |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110476316 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176753493540864 |
---|---|
any_adam_object | |
author | Mandrekar, Vidyadhar 1939- |
author_GND | (DE-588)1013611721 |
author_facet | Mandrekar, Vidyadhar 1939- |
author_role | aut |
author_sort | Mandrekar, Vidyadhar 1939- |
author_variant | v m vm |
building | Verbundindex |
bvnumber | BV043867760 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110476316 (OCoLC)960040342 (DE-599)BVBBV043867760 |
dewey-full | 519.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.23 |
dewey-search | 519.23 |
dewey-sort | 3519.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110476316 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03729nmm a2200649zc 4500</leader><controlfield tag="001">BV043867760</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170513 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161109s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110476316</subfield><subfield code="c">Online (PDF)</subfield><subfield code="9">978-3-11-047631-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110475425</subfield><subfield code="c">print</subfield><subfield code="9">978-3-11-047542-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110475456</subfield><subfield code="c">Online (EPUB)</subfield><subfield code="9">978-3-11-047545-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110476316</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110476316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960040342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043867760</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mandrekar, Vidyadhar</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1013611721</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weak convergence of stochastic processes</subfield><subfield code="b">with applications to statistical limit theorems</subfield><subfield code="c">Vidyadhar S. Mandrekar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (148 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Textbook</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents:Weak convergence of stochastic processesWeak convergence in metric spacesWeak convergence on C[0, 1] and D[0,∞)Central limit theorem for semi-martingales and applicationsCentral limit theorems for dependent random variablesEmpirical processBibliography</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwache Konvergenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastischer Prozess</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwache Konvergenz</subfield><subfield code="0">(DE-588)4180292-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zentraler Grenzwertsatz</subfield><subfield code="0">(DE-588)4067618-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schwache Konvergenz</subfield><subfield code="0">(DE-588)4180292-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zentraler Grenzwertsatz</subfield><subfield code="0">(DE-588)4067618-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA16</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029277699</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA16</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110476316</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043867760 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:37:12Z |
institution | BVB |
isbn | 9783110476316 9783110475425 9783110475456 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029277699 |
oclc_num | 960040342 |
open_access_boolean | |
owner | DE-859 DE-860 DE-91 DE-BY-TUM DE-Aug4 DE-898 DE-BY-UBR DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-91 DE-BY-TUM DE-Aug4 DE-898 DE-BY-UBR DE-739 DE-1046 DE-1043 DE-858 |
physical | 1 Online-Ressource (148 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA16 ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA16 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Textbook |
spelling | Mandrekar, Vidyadhar 1939- Verfasser (DE-588)1013611721 aut Weak convergence of stochastic processes with applications to statistical limit theorems Vidyadhar S. Mandrekar Berlin ; Boston De Gruyter [2016] © 2016 1 Online-Ressource (148 Seiten) txt rdacontent c rdamedia cr rdacarrier De Gruyter Textbook Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents:Weak convergence of stochastic processesWeak convergence in metric spacesWeak convergence on C[0, 1] and D[0,∞)Central limit theorem for semi-martingales and applicationsCentral limit theorems for dependent random variablesEmpirical processBibliography In English Schwache Konvergenz Statistik Stochastischer Prozess Schwache Konvergenz (DE-588)4180292-5 gnd rswk-swf Zentraler Grenzwertsatz (DE-588)4067618-3 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 s Schwache Konvergenz (DE-588)4180292-5 s Zentraler Grenzwertsatz (DE-588)4067618-3 s 1\p DE-604 https://doi.org/10.1515/9783110476316 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mandrekar, Vidyadhar 1939- Weak convergence of stochastic processes with applications to statistical limit theorems Schwache Konvergenz Statistik Stochastischer Prozess Schwache Konvergenz (DE-588)4180292-5 gnd Zentraler Grenzwertsatz (DE-588)4067618-3 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4180292-5 (DE-588)4067618-3 (DE-588)4057630-9 |
title | Weak convergence of stochastic processes with applications to statistical limit theorems |
title_auth | Weak convergence of stochastic processes with applications to statistical limit theorems |
title_exact_search | Weak convergence of stochastic processes with applications to statistical limit theorems |
title_full | Weak convergence of stochastic processes with applications to statistical limit theorems Vidyadhar S. Mandrekar |
title_fullStr | Weak convergence of stochastic processes with applications to statistical limit theorems Vidyadhar S. Mandrekar |
title_full_unstemmed | Weak convergence of stochastic processes with applications to statistical limit theorems Vidyadhar S. Mandrekar |
title_short | Weak convergence of stochastic processes |
title_sort | weak convergence of stochastic processes with applications to statistical limit theorems |
title_sub | with applications to statistical limit theorems |
topic | Schwache Konvergenz Statistik Stochastischer Prozess Schwache Konvergenz (DE-588)4180292-5 gnd Zentraler Grenzwertsatz (DE-588)4067618-3 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Schwache Konvergenz Statistik Stochastischer Prozess Zentraler Grenzwertsatz |
url | https://doi.org/10.1515/9783110476316 |
work_keys_str_mv | AT mandrekarvidyadhar weakconvergenceofstochasticprocesseswithapplicationstostatisticallimittheorems |