Continuous Geometry:
In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2016]
|
Schriftenreihe: | Princeton mathematical series
25 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781400883950 |
DOI: | 10.1515/9781400883950 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043867690 | ||
003 | DE-604 | ||
005 | 20191021 | ||
007 | cr|uuu---uuuuu | ||
008 | 161109s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781400883950 |9 978-1-4008-8395-0 | ||
024 | 7 | |a 10.1515/9781400883950 |2 doi | |
035 | |a (ZDB-23-DGG)9781400883950 | ||
035 | |a (OCoLC)948756403 | ||
035 | |a (DE-599)BVBBV043867690 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 516.5 |2 22 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Von Neumann, John |d 1903-1957 |0 (DE-588)118770314 |4 aut | |
245 | 1 | 0 | |a Continuous Geometry |c John von Neumann |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2016] | |
264 | 4 | |c © 1998 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton mathematical series |v 25 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) | ||
520 | |a In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading | ||
650 | 4 | |a Continuous geometries | |
650 | 4 | |a Continuous groups | |
650 | 4 | |a Geometry, Projective | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Kontinuierliche Geometrie |0 (DE-588)4561761-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kontinuierliche Geometrie |0 (DE-588)4561761-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Halperin, Israel |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-05893-8 |
830 | 0 | |a Princeton mathematical series |v 25 |w (DE-604)BV045898993 |9 25 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400883950?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-PMS |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029277628 |
Datensatz im Suchindex
_version_ | 1804176753294311424 |
---|---|
any_adam_object | |
author | Von Neumann, John 1903-1957 Halperin, Israel |
author_GND | (DE-588)118770314 |
author_facet | Von Neumann, John 1903-1957 Halperin, Israel |
author_role | aut aut |
author_sort | Von Neumann, John 1903-1957 |
author_variant | n j v nj njv i h ih |
building | Verbundindex |
bvnumber | BV043867690 |
classification_rvk | SK 830 |
collection | ZDB-23-PMS ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781400883950 (OCoLC)948756403 (DE-599)BVBBV043867690 |
dewey-full | 516.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.5 |
dewey-search | 516.5 |
dewey-sort | 3516.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400883950 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02456nmm a2200493zcb4500</leader><controlfield tag="001">BV043867690</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161109s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400883950</subfield><subfield code="9">978-1-4008-8395-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400883950</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400883950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)948756403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043867690</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Von Neumann, John</subfield><subfield code="d">1903-1957</subfield><subfield code="0">(DE-588)118770314</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous Geometry</subfield><subfield code="c">John von Neumann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton mathematical series</subfield><subfield code="v">25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous geometries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Projective</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuierliche Geometrie</subfield><subfield code="0">(DE-588)4561761-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuierliche Geometrie</subfield><subfield code="0">(DE-588)4561761-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halperin, Israel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-05893-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton mathematical series</subfield><subfield code="v">25</subfield><subfield code="w">(DE-604)BV045898993</subfield><subfield code="9">25</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400883950?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PMS</subfield><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029277628</subfield></datafield></record></collection> |
id | DE-604.BV043867690 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:37:11Z |
institution | BVB |
isbn | 9781400883950 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029277628 |
oclc_num | 948756403 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-23-PMS ZDB-23-DGG |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press |
record_format | marc |
series | Princeton mathematical series |
series2 | Princeton mathematical series |
spelling | Von Neumann, John 1903-1957 (DE-588)118770314 aut Continuous Geometry John von Neumann Princeton, NJ Princeton University Press [2016] © 1998 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Princeton mathematical series 25 Description based on online resource; title from PDF title page (publisher's Web site, viewed Sep. 08, 2016) In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading Continuous geometries Continuous groups Geometry, Projective Topology Kontinuierliche Geometrie (DE-588)4561761-2 gnd rswk-swf Kontinuierliche Geometrie (DE-588)4561761-2 s DE-604 Halperin, Israel aut Erscheint auch als Druck-Ausgabe 0-691-05893-8 Princeton mathematical series 25 (DE-604)BV045898993 25 https://doi.org/10.1515/9781400883950?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Von Neumann, John 1903-1957 Halperin, Israel Continuous Geometry Princeton mathematical series Continuous geometries Continuous groups Geometry, Projective Topology Kontinuierliche Geometrie (DE-588)4561761-2 gnd |
subject_GND | (DE-588)4561761-2 |
title | Continuous Geometry |
title_auth | Continuous Geometry |
title_exact_search | Continuous Geometry |
title_full | Continuous Geometry John von Neumann |
title_fullStr | Continuous Geometry John von Neumann |
title_full_unstemmed | Continuous Geometry John von Neumann |
title_short | Continuous Geometry |
title_sort | continuous geometry |
topic | Continuous geometries Continuous groups Geometry, Projective Topology Kontinuierliche Geometrie (DE-588)4561761-2 gnd |
topic_facet | Continuous geometries Continuous groups Geometry, Projective Topology Kontinuierliche Geometrie |
url | https://doi.org/10.1515/9781400883950?locatt=mode:legacy |
volume_link | (DE-604)BV045898993 |
work_keys_str_mv | AT vonneumannjohn continuousgeometry AT halperinisrael continuousgeometry |