Infinity and the Mind: The Science and Philosophy of the Infinite
In Infinity and the Mind, Rudy Rucker leads an excursion to that stretch of the universe he calls the "Mindscape," where he explores infinity in all its forms: potential and actual, mathematical and physical, theological and mundane. Rucker acquaints us with Gödel's rotating universe,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2004]
|
Schriftenreihe: | Princeton Science Library
|
Schlagworte: | |
Online-Zugang: | FHA01 FKE01 FLA01 UPA01 FAW01 FAB01 FCO01 Volltext |
Zusammenfassung: | In Infinity and the Mind, Rudy Rucker leads an excursion to that stretch of the universe he calls the "Mindscape," where he explores infinity in all its forms: potential and actual, mathematical and physical, theological and mundane. Rucker acquaints us with Gödel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations. Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Gödel's incompleteness theorems. His personal encounters with Gödel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism |
Beschreibung: | Description based on online resource; title from PDF title page (ACM, viewed April 03 2015) |
Beschreibung: | 368pages) illustrations |
ISBN: | 9781400849048 |
DOI: | 10.1515/9781400849048 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043867635 | ||
003 | DE-604 | ||
005 | 20180712 | ||
007 | cr|uuu---uuuuu | ||
008 | 161109s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781400849048 |9 978-1-4008-4904-8 | ||
024 | 7 | |a 10.1515/9781400849048 |2 doi | |
035 | |a (ZDB-23-DGG)9781400849048 | ||
035 | |a (OCoLC)852898983 | ||
035 | |a (DE-599)BVBBV043867635 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 111.6 |2 22 | |
082 | 0 | |a 511/.3 |2 23 | |
100 | 1 | |a Rucker, Rudy |d 1946- |0 (DE-588)109823761 |4 aut | |
245 | 1 | 0 | |a Infinity and the Mind |b The Science and Philosophy of the Infinite |c Rudy Rucker |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2004] | |
264 | 4 | |c © 2004 | |
300 | |a 368pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Science Library | |
500 | |a Description based on online resource; title from PDF title page (ACM, viewed April 03 2015) | ||
520 | |a In Infinity and the Mind, Rudy Rucker leads an excursion to that stretch of the universe he calls the "Mindscape," where he explores infinity in all its forms: potential and actual, mathematical and physical, theological and mundane. Rucker acquaints us with Gödel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations. Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Gödel's incompleteness theorems. His personal encounters with Gödel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism | ||
546 | |a In English | ||
650 | 4 | |a Ensembles, Théorie des | |
650 | 4 | |a Infini | |
650 | 4 | |a Infinite | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Logique symbolique et mathématique | |
650 | 4 | |a Mathematics, other | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Set theory | |
650 | 7 | |a PHILOSOPHY / Metaphysics |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Infinite | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transfinite Zahl |0 (DE-588)4471005-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logik |0 (DE-588)4036202-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Philosophie |0 (DE-588)4045791-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichkeit |0 (DE-588)4136067-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | 1 | |a Logik |0 (DE-588)4036202-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Unendlichkeit |0 (DE-588)4136067-9 |D s |
689 | 1 | 1 | |a Logik |0 (DE-588)4036202-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 2 | 1 | |a Philosophie |0 (DE-588)4045791-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Transfinite Zahl |0 (DE-588)4471005-7 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400849048 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029277573 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9781400849048?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400849048?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400849048?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400849048?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400849048?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400849048?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400849048?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176753262854144 |
---|---|
any_adam_object | |
author | Rucker, Rudy 1946- |
author_GND | (DE-588)109823761 |
author_facet | Rucker, Rudy 1946- |
author_role | aut |
author_sort | Rucker, Rudy 1946- |
author_variant | r r rr |
building | Verbundindex |
bvnumber | BV043867635 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781400849048 (OCoLC)852898983 (DE-599)BVBBV043867635 |
dewey-full | 111.6 511/.3 |
dewey-hundreds | 100 - Philosophy & psychology 500 - Natural sciences and mathematics |
dewey-ones | 111 - Ontology 511 - General principles of mathematics |
dewey-raw | 111.6 511/.3 |
dewey-search | 111.6 511/.3 |
dewey-sort | 3111.6 |
dewey-tens | 110 - Metaphysics 510 - Mathematics |
discipline | Mathematik Philosophie |
doi_str_mv | 10.1515/9781400849048 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05002nmm a2200889zc 4500</leader><controlfield tag="001">BV043867635</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180712 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161109s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400849048</subfield><subfield code="9">978-1-4008-4904-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400849048</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400849048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852898983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043867635</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">111.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rucker, Rudy</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)109823761</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinity and the Mind</subfield><subfield code="b">The Science and Philosophy of the Infinite</subfield><subfield code="c">Rudy Rucker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2004]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">368pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Science Library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (ACM, viewed April 03 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In Infinity and the Mind, Rudy Rucker leads an excursion to that stretch of the universe he calls the "Mindscape," where he explores infinity in all its forms: potential and actual, mathematical and physical, theological and mundane. Rucker acquaints us with Gödel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations. Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Gödel's incompleteness theorems. His personal encounters with Gödel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infini</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logique symbolique et mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, other</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PHILOSOPHY / Metaphysics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transfinite Zahl</subfield><subfield code="0">(DE-588)4471005-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Philosophie</subfield><subfield code="0">(DE-588)4045791-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Philosophie</subfield><subfield code="0">(DE-588)4045791-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Transfinite Zahl</subfield><subfield code="0">(DE-588)4471005-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400849048</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029277573</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400849048?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400849048?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400849048?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400849048?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400849048?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400849048?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400849048?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043867635 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:37:11Z |
institution | BVB |
isbn | 9781400849048 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029277573 |
oclc_num | 852898983 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
physical | 368pages) illustrations |
psigel | ZDB-23-DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Science Library |
spelling | Rucker, Rudy 1946- (DE-588)109823761 aut Infinity and the Mind The Science and Philosophy of the Infinite Rudy Rucker Princeton, N.J. Princeton University Press [2004] © 2004 368pages) illustrations txt rdacontent c rdamedia cr rdacarrier Princeton Science Library Description based on online resource; title from PDF title page (ACM, viewed April 03 2015) In Infinity and the Mind, Rudy Rucker leads an excursion to that stretch of the universe he calls the "Mindscape," where he explores infinity in all its forms: potential and actual, mathematical and physical, theological and mundane. Rucker acquaints us with Gödel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations. Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Gödel's incompleteness theorems. His personal encounters with Gödel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism In English Ensembles, Théorie des Infini Infinite Logic, Symbolic and mathematical Logique symbolique et mathématique Mathematics, other Mathematics Mathematik Set theory PHILOSOPHY / Metaphysics bisacsh Mathematik (DE-588)4037944-9 gnd rswk-swf Transfinite Zahl (DE-588)4471005-7 gnd rswk-swf Logik (DE-588)4036202-4 gnd rswk-swf Philosophie (DE-588)4045791-6 gnd rswk-swf Unendlichkeit (DE-588)4136067-9 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s Logik (DE-588)4036202-4 s 1\p DE-604 Unendlichkeit (DE-588)4136067-9 s 2\p DE-604 Mathematik (DE-588)4037944-9 s Philosophie (DE-588)4045791-6 s 3\p DE-604 Transfinite Zahl (DE-588)4471005-7 s 4\p DE-604 https://doi.org/10.1515/9781400849048 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rucker, Rudy 1946- Infinity and the Mind The Science and Philosophy of the Infinite Ensembles, Théorie des Infini Infinite Logic, Symbolic and mathematical Logique symbolique et mathématique Mathematics, other Mathematics Mathematik Set theory PHILOSOPHY / Metaphysics bisacsh Mathematik (DE-588)4037944-9 gnd Transfinite Zahl (DE-588)4471005-7 gnd Logik (DE-588)4036202-4 gnd Philosophie (DE-588)4045791-6 gnd Unendlichkeit (DE-588)4136067-9 gnd Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4471005-7 (DE-588)4036202-4 (DE-588)4045791-6 (DE-588)4136067-9 (DE-588)4074715-3 |
title | Infinity and the Mind The Science and Philosophy of the Infinite |
title_auth | Infinity and the Mind The Science and Philosophy of the Infinite |
title_exact_search | Infinity and the Mind The Science and Philosophy of the Infinite |
title_full | Infinity and the Mind The Science and Philosophy of the Infinite Rudy Rucker |
title_fullStr | Infinity and the Mind The Science and Philosophy of the Infinite Rudy Rucker |
title_full_unstemmed | Infinity and the Mind The Science and Philosophy of the Infinite Rudy Rucker |
title_short | Infinity and the Mind |
title_sort | infinity and the mind the science and philosophy of the infinite |
title_sub | The Science and Philosophy of the Infinite |
topic | Ensembles, Théorie des Infini Infinite Logic, Symbolic and mathematical Logique symbolique et mathématique Mathematics, other Mathematics Mathematik Set theory PHILOSOPHY / Metaphysics bisacsh Mathematik (DE-588)4037944-9 gnd Transfinite Zahl (DE-588)4471005-7 gnd Logik (DE-588)4036202-4 gnd Philosophie (DE-588)4045791-6 gnd Unendlichkeit (DE-588)4136067-9 gnd Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Ensembles, Théorie des Infini Infinite Logic, Symbolic and mathematical Logique symbolique et mathématique Mathematics, other Mathematics Mathematik Set theory PHILOSOPHY / Metaphysics Transfinite Zahl Logik Philosophie Unendlichkeit Mengenlehre |
url | https://doi.org/10.1515/9781400849048 |
work_keys_str_mv | AT ruckerrudy infinityandthemindthescienceandphilosophyoftheinfinite |