Handbook of carbohydrate-modifying biocatalysts:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Pan Stanford Publishing
[2016]
|
Schriftenreihe: | Pan Stanford series on biocatalysis
volume 2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | xxvii, 1027 pages Illustrationen |
ISBN: | 9789814669788 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV043863806 | ||
003 | DE-604 | ||
005 | 20170505 | ||
007 | t | ||
008 | 161107s2016 a||| |||| 00||| eng d | ||
020 | |a 9789814669788 |9 978-981-4669-78-8 | ||
035 | |a (OCoLC)992456548 | ||
035 | |a (DE-599)HBZHT019130808 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a VE 7040 |0 (DE-625)147136:253 |2 rvk | ||
084 | |a VK 8580 |0 (DE-625)147542:253 |2 rvk | ||
084 | |a WF 9785 |0 (DE-625)148467: |2 rvk | ||
245 | 1 | 0 | |a Handbook of carbohydrate-modifying biocatalysts |c edited by Peter Grunwald |
264 | 1 | |a Singapore |b Pan Stanford Publishing |c [2016] | |
300 | |a xxvii, 1027 pages |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Pan Stanford series on biocatalysis |v volume 2 | |
650 | 0 | 7 | |a Biokatalyse |0 (DE-588)4393622-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökologische Chemie |0 (DE-588)4135167-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Katalyse |0 (DE-588)4029921-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohlenhydrate |0 (DE-588)4164517-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 0 | 1 | |a Kohlenhydrate |0 (DE-588)4164517-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Biokatalyse |0 (DE-588)4393622-2 |D s |
689 | 1 | 1 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Ökologische Chemie |0 (DE-588)4135167-8 |D s |
689 | 2 | 1 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 2 | 2 | |a Biokatalyse |0 (DE-588)4393622-2 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Grunwald, Peter |d 1941- |0 (DE-588)1025209303 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-4669-79-5 |
830 | 0 | |a Pan Stanford series on biocatalysis |v volume 2 |w (DE-604)BV042670725 |9 2 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-029273849 |
Datensatz im Suchindex
_version_ | 1804176746632708096 |
---|---|
adam_text | Contents
Preface xxiii
1 Basics in Carbohydrate Chemistry 1
Heinrich Hühnerfuss
1.1 Introduction 1
1.2 Classification of Carbohydrates 2
1.2.1 Monosaccharides 2
1.2.1.1 Configuration and nomenclature 4
1.2.1.2 Ring structures of carbohydrates 5
1.2.2 Disaccharides 10
1.2.3 Oligosaccharides 12
1.2.4 Polysaccharides 13
1.3 Reactions of carbohydrates 16
1.3.1 Oxidation of carbohydrates 16
1.3.2 Reduction of Carbohydrates 18
1.3.3 Nucleophilic Reactions 19
1.3.4 Acylation and Alkylation of Monosaccharides 20
1.3.5 Formation of 0-Glycosides and N-Glycosides 21
1.4 Glycoproteins 26
2 Glycoconjugates: A Brief Overview 29
Peter Grunwald
2.1 Introduction 29
2.2 Glycoconjugates: General Features and Glycosylation 31
2.3 Glycoproteins 35
2.3.1 Recombinant Glycoproteins 37
2.4 N-Glycosylation of Proteins 44
2.4.1 Quality Control and ER-Associated Degradation 47
2.4.2 Cytosolic Degradation 55
vl I Contents
2.5 Mucins 61
2.6 Glycosaminoglycans and Proteoglycans 67
2.6.1 Heparin 69
2.6.2 Heparan Sulfate 71
2.6.3 Chondroitin and Dermatan Sulfate 73
2.6.4 Keratan Sulfate 75
2.7 Peptidoglycans 76
2.8 Glycolipids, Lipopolysaccharides, and Toxins 79
2.8.1 Lipopolysaccharides 83
2.8.2 Toxins 88
2.9 Carbohydrates and Antibiotics 91
2.10 Antibiotics and Resistance 98
2.11 Glycan Analysis Methods 104
2.12 Glyconanotechnology 111
2.13 Concluding Remarks 115
3 Oligosaccharides and Glycoconjugates in Recognition
Processes 147
Thisbe K. Lindhorst
3.1 Introduction 147
3.2 The Lectins and Their Ligands 148
3.2.1 Classification of Lectins 149
3.2.2 Characteristics of Important Lectin Classes 152
3.2.2.1 The R- and L-type lectins 152
3.2.2.2 The P-type lectins 153
3.2.2.3 The C-type lectins 154
3.2.2.4 The collectins: A subgroup of C-type
lectins 156
3.2.2.5 The selectins: A subgroup of C-type
lectins 156
3.2.2.6 The I-type lectins 159
3.2.2.7 The S-type lectins 161
3.3 Recognition of Carbohydrates 164
3.3.1 Formation of a Carbohydrate-Lectin Complex 164
3.3.2 Networks of Stabilizing Interactions 166
3.3.3 Complexation via Ca2* 170
Contents I vü
3.3.4 Weak Interactions and the Role of Water 173
3.3.5 Hydrophobic Interactions with
Carbohydrates 174
3.3.6 Binding to the Bacterial Lectin FimH 175
3.4 The Biological Role of Carbohydrate-Lectin
Interactions 176
3.4.1 Clearance of Glycoproteins by Interaction
with ASGPR 177
3.4.2 Leukocyte Trafficking 178
3.4.3 Galectins in Signaling 179
3.4.4 Type 1 Fimbriae-Mediated Bacterial Adhesion 184
3.5 Multivalency of Carbohydrate-Protein Interactions 185
3.6 Model Systems for the Investigation of Carbohydrate-
Protein Interactions 192
3.6.1 Multivalent Glycomimetics: Glycodendrimers
and Successors 193
3.6.2 Self-Assembled Monolayers: Glyco-SAMs 197
3.6.3 Testing Bacterial Adhesion 201
3.6.4 Tailoring Carbohydrate Surfaces to Mimic
Cellular Adhesion to the Glycocalyx 204
3.7 Conclusions and Outlook 205
4 Glycoside Hydrolases 215
Motomitsu Kitaoka
4.1 Introduction 215
4.2 Classification 218
4.2.1 Anomeric Configuration of the Substrate 218
4.2.2 Location of the Hydrolyzed Linkage 218
4.2.3 Anomeric Retention and Inversion 219
4.3 Mechanisms of Action 220
4.3.1 Retaining GHs 220
4.3.1.1 Typical retaining GHs 220
4.3.1.2 Substrate-assisted catalysis of
retaining GHs 221
4.3.1.3 NAD*-dependent catalysis of
retaining GHs 222
vin
Contents
4.3.2 Inverting GHs 223
4.3.3 Hydrolysis and Transglycosylation 224
4.4 Chemoenzymatic Syntheses Using GHs with
Engineered Substrates 227
4.5 Chemoenzymatic Syntheses Using Mutant GHs 228
4.6 Concluding Remarks 232
5 Disaccharide Phosphorylases: Mechanistic Diversity
and Application in the Giycosciences 237
Christiane Luley-Goedl and Bernd Nidetzky
5.1 Introduction 237
5.2 Disaccharide Phosphorylases: Classification,
Structure, and Function 240
5.3 Phosphorylase Mechanisms 244
5.3.1 Cellobiose and Chitobiose Phosphorylase 244
5.3.2 Sucrose Phosphorylase 248
5.3.3 Retaining a,«-Trehalose Phosphorylase 252
5.4 Novel Application of Disaccharide Phosphorylases
in Synthesis 256
5.4.1 Multi-Step Enzymatic Synthesis of
Disaccharides and Other Glycosides 260
5.4.1.1 Coupling to sucrose conversion 260
5.4.1.2 Lacto-N-biose 261
5.4.1.3 Glucosylglycerol 263
5.4.2 Engineering of Cellobiose Phosphorylase
for Altered Substrate Specificity 265
5.5 Conclusions 266
6 Dihydroxyacetone Phosphate-Dependent Aldolases:
From Flask Reaction to Cell-Based Synthesis 275
Mohui Wei, Zijie Li, Baolin Wu, Yunpeng Liu, Tiehai Li,
Liuqing Wen, Jing Li, Jiansong Cheng, Junqiang Fang,
Xianwei Liu, and Peng George Wang
6.1 Introduction 275
6.2 Synthetic Applications 276
6.3 DHAP Generation 278
Contents
ix
6.4 Overcoming DHAP Dependence 280
6.4.1 Substrate/Reaction Engineering 280
6.4.2 Discovery and Design of New Enzymes 281
6.4.3 Directed Evolution of Enzymes 282
6.5 Transforming DHAP-Dependent Aldolase-Mediated
Reactions from Flask into Cell-Based Synthesis 283
6.6 Conclusion 291
7 Enzymatic and Chemoenzymatic Synthesis of Nucleotide
Sugars: Novel Enzymes, Novel Substrates, Novel Products,
and Novel Routes 297
Leonie Engels and Lothar Elling
7.1 Introduction 297
7.2 Novel Enzymes 301
7.2.1 UDP-Nucleotidylyltransferases 301
7.2.2 dTDP-Nucleotidylyltransferases 303
7.2.3 Salvage Pathway Enzymes 304
7.2.4 Glycosyltransferases 306
7.3 Novel Substrates and Novel Products 307
7.3.1 Screening of Novel Substrates 307
7.3.2 Novel Substrates for Nucleotidylyltransferases 309
7.3.3 Novel Substrates for Salvage Pathway
Enzymes 310
7.3.4 Nucleotide Furanose Sugars 312
7.3.5 Nucleotide Phosphono Sugars 313
7.3.6 Nucleotide Carba Sugars 314
7.4 Novel Routes 314
7.4.1 Combinatorial Biocatalysis for in situ
(Re) Generation of Nucleotide Sugars 314
7.5 Conclusions 315
8 Iteratively Acting Glycosyltransferases 321
Songya Zhang and Andreas Bechthold
8.1 Introduction 321
8.2 Iterative Acting GTs Involved in Polysaccharide
Biosynthesis in Plants 323
Contents
8.2.1 GTs Involved in Biosynthesis of Starch 323
8.2.2 GTs Involved in Hemicellulose Biosynthesis 325
8.2.3 GTs Involved in Cellulose Biosynthesis 328
8.3 Iteratively Acting GTs Involved in Natural Product
Biosynthesis 328
8.3.1 GTs Involved in Natural Product Biosynthesis 329
8.3.2 GTs Involved in Biosynthesis of Aureolic
Acid-Type Compounds 331
8.3.3 GTs Involved in Biosynthesis of Anthracyclines 334
8.3.4 GTs Involved in Biosynthesis of Angucyclines 335
8.3.5 GTs Involved in Biosynthesis of Macrocyclic
Lactones 337
8.3.6 GTs Involved in Biosynthesis of
Oligosaccharides 338
8.4 Concluding Remarks 339
9 Bacterial Glycosyitransferases Involved in Molecular
Mimicry of Mammalian Glycans 349
Warren Wakarchuk
9.1 Introduction 349
9.2 Sialyltransferases 361
9.2.1 GT-52 and GT-80 (GT-B Folds) 361
9.2.2 GT-42 (Modified GT-A Folds) 367
9.2.3 GT-38 and Other Polymerizing
Glycosyitransferases 370
9.2.4 Microbial GAG Polymerases 373
9.3 Galactosyltransferases and N-Acetylhexosamine
Transferases 375
9.3.1 ß-l,3-Galactosyitransferases and ß-l,3/4-Af-
Acetylhexosamine Transferases of GT-2
and GT-82 375
9.3.2 ß-l,4-Galactosyltransferases of GT-2
and GT-25 378
9.3.3 a-l,4-Galactosyltransferases of GT-8 380
9.4 Fucosyltransferases of GT-10 and GT-11 384
9.5 Concluding Remarks 337
Contents I xí
10 Sulfotransferases and Sulfatases: Sulfate Modification
of Carbohydrates 399
Eli Chapman and Sarah R. Hanson
10.1 Introduction 399
10.2 Sulfotransferases and Sulfatases Modify the
Sulfation State of Carbohydrates 400
10.3 Sulfotransferases 406
10.3.1 Carbohydrate-Modifying STs in Humans 406
10.3.1.1 Glycosaminoglycans 406
10.3.1.2 Mucins 416
10.3.1.3 Sulfolipids 418
10.3.1.4 HNK-1 carbohydrate 419
10.3.2 Carbohydrate-Modifying STs in Bacteria 419
10.3.3 Structure 421
10.3.4 Mechanism 426
10.4 Sulfatases 430
10.4.1 Carbohydrate-Modifying Sulfatases in
Humans 431
10.4.1.1 Extracellular sulfatases 432
10.4.1.2 Lysosomal sulfatases 435
10.4.1.3 Secretory sulfatases with unknown
function 437
10.4.2 Carbohydrate Sulfatases in Bacteria 437
10.4.2.1 GAG-degrading sulfatases 438
10.4.2.2 Bacterial mucin sulfatases 440
10.4.3 Sulfatase Structure 440
10.4.4 Sulfatase Mechanism 445
10.5 Concluding Remarks 450
11 Glycosylation in Health and Disease 467
Peter Grunwald
11.1 Introduction 467
11.2 Glycosaminoglycan/Protein Interactions 468
11.2.1 Heparins: Anticoagulant and
Anti metastatic Agents 472
xii
Contents
11.2.2 Glycosaminoglycans and HIV 476
11.2.3 Neurodegenarative Diseases and GAGs 480
11.3 Mucins and Cancer 483
11.4 Glycosphingolipids: General Aspects 490
11.4.1 Catabolism of GSLs and Storage Diseases 495
11.4.2 GSLs and Cancer 508
11.5 Inhibitors of Carbohydrate Modifying Enzymes
and Chaperones 510
11.5.1 Sugar-Mimicking Inhibitors 515
11.5.2 Chaperon-Mediated Therapy (CMT) 525
11.6 Quality-Control Defects in the ER 531
11.7 Lipoteichoic Acids 532
11.8 GPI-Anchored Proteins 536
11.9 Recombinant Therapeutics 539
11.10 Concluding Remarks 543
12 Sialic Acid Derivatives, Analogs, and Mimetics as
Biological Probes and Inhibitors of Sialic Acid
Recognizing Proteins 569
Joe Tiralongo and Thomas Haselhorst
12.1 Introduction 569
12.2 Sialic Acid Biosynthesis in Mammals 571
12.3 Sialic Acid and Cancer 571
12.4 Sialyltransferase and CMP-CST Inhibitors Based
on Donor Substrate Analogs and Transition
State Mimetics 575
12.4.1 Sialyltransferase Inhibitors 575
12.4.2 CST Inhibitors 578
12.5 Glycomimetic Inhibitors of Selectin and Siglecs 581
12.6 Exploring the Interaction of Substrate Derivatives,
Analogs, and Mimetics with Sialic Acid Recognizing
Proteins by STD NMR Spectroscopy 583
12.6.1 CMP-Sialic Acid Synthetase 585
12.6.2 CMP-Sialic Acid Transporter 586
12.6.3 Vibrio cholerae Sialidase 590
Contents I xili
12.6.4 Rotavirus Haemagglutinin (VP8*) 592
12.7 Concluding Remarks 595
13 Enzymes of the Carbohydrate Metabolism and Catabolism
for Chemoenzymatic Syntheses of Complex Oligosaccharides 603
Stephan Böttcher, Julian Thimm, and Joachim Thiem
13.1 Introduction 603
13.2 Glycosylation Employing Leloir and Non-Leloir
Glycosyltransferases 605
13.2.1 Leloir Glycosyltransferases 605
13.2.1.1 ß,l-4-galactosyltransferase 605
13.2.1.2 аД-З/4-fucosyltransferase 609
13.2.1.3 а,2-3- and tx,2-6-sialyltransferases 610
13.2.2 Non-Leloir Glycosyltransferases 611
13.2.2.1 Cyclodextrin-аД-
4-glucosyltransferase (CGT) 612
13.2.2.2 Potato phosphorylase 612
13.2.2.3 ß,l-3-Galactosyl-/V-acetylhexosamine
Phosphorylase 613
13.3 Glycosylation Employing Glycohydrolases and
Glycosynthases 614
13.3.1 £xo-Glycosidases 614
13.3.1.1 ß,l-3-Galactosidases 616
13.3.1.2 ß,l-4-Galactosidases 618
13.3.1.3 а-Sialidases 621
13.3.2 Trans-Sialidase 622
13.3.3 fndo-Glycosidases 625
13.3.4 Glycosynthases 627
14 From Gene to Product: Tailor-Made Oligosaccharides and
Polysaccharides by Enzyme and Substrate Engineering 637
Maria Elena Ortiz-Soto and Jürgen Seibel
14.1 Introduction 637
14.2 Enzyme Engineering of Glucansucrases 638
14.3 Donor and Acceptor Substrate Engineering:
A Chemo-Enzymatic Approach for the Synthesis
of Designed Products 641
XIV I Contents
14.4 Enzyme Engineering of Fructansucrases 643
14.5 Sucrose Analogues as Donor Substrates 647
14.6 Outlook
15 Synthesis and Modification of Carbohydrates via
Metabolic Pathway Engineering in Microorganisms 657
Xian-wei Liu, Lei Li, Hai-tao Gao, Li~jun Dang,
and Peng George Wang
15.1 Introduction 657
15.2 Oligosaccharide Synthesis by Metabolic Engineered
Microorganisms 659
15.2.1 Coupled Metabolically Engineered
Bacteria Technology 660
15.2.2 Superbug Technology with in situ
Regeneration of UDP-Gal 662
15.2.3 Oligosaccharide Synthesis via Living
Cell Factory 665
15.3 Polysaccharide Remodeling and Molecular
Imaging via Metabolic Pathway Engineering 668
15.4 Glycodiversification of Small-Molecule
Natural Products via Metabolic Pathway
Engineering 672
15.5 Humanization of Protein N-Glycans via Metabolic
Pathway Engineering in Yeast 674
15.6 Summary 677
16 Metabolic Pathway Engineering for Hyaluronic
Acid Production 683
Esteban Marcellin, Wendy Y Chen, and Lars K. Nielsen
16.1 Introduction 683
16.2 HA Synthase 684
16.3 Streptococcal Hyaluronic Acid Production 685
16.4 Streptococcal Strain Engineering 688
16.5 HA Production in Heterologous Hosts 690
16.6 Systems Biology and Future Perspective 691
Contents
XV
17 Microbial Rhamnolipids 697
Marius HenkelMarkus M. Müller, Barbara Hermann,
Christoph Syldatk:, and Rudolf Hausmann
17.1 Introduction 697
17.2 Chemical Structure and Properties of Microbial
Rhamnolipids 698
17.2.1 Rhamnolipid Structure 698
17.2.2 Surfactant Properties of Rhamnolipids 700
17.2.3 Physiological Role of Rhamnolipids 700
17.3 Rhamnolipid Production by Pseudomonas aeruginosa 701
17.3.1 Rhamnolipid Biosynthesis Pathway 701
17.3.2 Quorum Sensing Regulation of Rhamnolipid
Biosynthesis 703
17.3.3 Characteristic Rhamnolipid Production
Curves 707
17.3.3.1 Rhamnolipid production under
growth-limiting conditions 707
17.3.3.2 Specific rhamnolipid production
rate: interplay of growth and
quorum sensing 708
17.3.3.3 Genetic regulation of rhamnolipid
production under growth-limiting
conditions 710
17.3.4 Cultivation Strategies for Rhamnolipid
Production 710
17.3.4.1 Batch and fed-batch strategies 711
17.3.4.2 Resting cells cultivations 711
17.3.4.3 Semi-continuous cultivations 714
17.3.4.4 Continuous cultures 714
17.3.4.5 Type of carbon source 715
17.3.4.6 Influence of the growth-limiting
component 715
17.3.4.7 Other factors influencing
rhamnolipid production 716
17.3.4.8 Typical production media
compositions 717
xvi Contents
17.3.5 Downstream Processing of Rhamnolipids 717
17.3.5.1 Production of rhamnolipid crude
extracts 717
17.3.5.2 Further purification steps 719
17.3.5.3 In situ product removal 720
17.4 Rhamnolipid Production by Other Microorganisms 721
17.4.1 Recombinant Production of Rhamnolipids 724
17.5 Commercial Aspects of Rhamnolipids 724
17.5.1 Agriculture and Environment 725
17.5.2 Cosmetics and Medicine 726
17.5.3 Food Technology 726
17.5.4 Cleaning Detergents 727
17.6 Needs and Future Trends in Rhamnolipid
Production 727
17.6.1 Systems Biotechnology” and Modeling
Approaches for the Improvement of
Rhamnolipid Production 728
17.6.2 Future Trends and Needs for Downstream
Processing 729
17.6.3 Strain Improvement and Development 730
17.7 Outlook 730
18 Chitin-Converting Enzymes 739
Karin Μοβ, Susanne Zibek, Thomas Hirth, and Steffen Rupp
18.1 Introduction 739
18.2 Chitin 739
18.3 Organisms Acting on Chitin 742
18.4 Chitin-Modifying Enzymes 744
18.4.1 Classification by Catalyzed Reaction
(NC-IUBMB) 744
18.4.2 Classification of Hydrolases by Amino
Acid Sequence Homology 746
18.4.3 Distribution of Chitin Hydrolases
within Different Domains 747
18.4.4 Three-Dimensional Structure of Hydrolases 748
18.4.5 Catalytic Mechanism and Involved Catalytic
Sites of Chitin Hydrolases 751
Contents
xvii
18.4.6 General Characteristics of Chitinases 753
18.4.7 Chitindeacetylases 754
18.5 Potential Applications of Chitinases and Chitin
Conversion Products 755
18.5.1 Chitin Oligomers and N-Acetylglucosamine 755
18.5.2 Chitinases as Biopesticides 756
18.5.3 Chitosan 757
18.6 Conclusion 757
19 Linear and Cyclic Oligosaccharides 763
Hajime Taniguchi
19.1 Introduction 763
19.2 Linear Oligosaccharides 764
19.2.1 Trehalose (a-D-Glucopyranosyl-a-D-
Glucopyranoside) 764
19.2.2 Palatinose (Isomaltulose) 771
19.2.3 Fructooligosaccharide 773
19.2.4 Lactosucrose 778
19.2.5 Galactooligosaccharides 779
19.2.6 Glycosylsucrose 782
19.3 Cyclic Oligosaccharides 783
19.3.1 Difructose Anhydrides (DFAII1) 783
19.3.2 Cyclic Nigerosylnigerose 786
19.3.3 Cyclic Maltosylmaltose 788
19.3.4 Isocyclomaltopentaose 789
19.3.5 Cyclic Pentasaccharide Containing 1-3, 1-4,
and 1-6 Linkages 790
19.3.6 Cyclodextrin 790
19.3.7 Cycloamylose 791
19.3.8 Highly Branched Cyclic Dextrin 792
19.3.9 Cycloisomaltooligosaccharide
(Cl, cyclodextran) 793
19.3.10 Cyclic ß-Glucans 795
19.3.11 Cycloinulooligosaccharides 797
19.4 Conclusion 798
xviif
Contents
20 Fungal Degradation of Plant Oligo- and Polysaccharides 809
Ronald P. de Vries, Joostvan den Brink, Kristiina S. Hilden,
Miia R. Mäkelä, and Henrik Stälbrand
20.1 Introduction
20.2 Degradation of Cellulose and Xyloglucan 811
20.2.1 Endoglucanases 812
20.2.2 Exoglucanases/Cellobiohydrolases 815
20.2.3 p-Glucosidases 817
20.2.4 Lytic Polysaccharide Monooxygenases 818
20.2.5 Accessory Enzymes for Xyloglucan
Degradation 819
20.2.6 Insights from Fungal Genomes 821
20.2.7 Industrial Applications of Cellulases 822
20.3 Degradation of Xylan 823
20.3.1 Endoxylanases 825
20.3.2 (3-Xylosidases 828
20.3.3 Accessory Enzymes for Xylan Degradation 829
20.3.4 Insights from Fungal Genomes 832
20.3.5 Applications of Xylanases 832
20.4 Degradation of Galacto(gluco)Mannan 834
20.4.1 p-Mannanases and p-Mannosidases 835
20.4.2 Accessory Enzymes 837
20.4.3 Insights from Fungal Genomes 837
20.4.4 Industrial Applications of Enzymes
Degrading Galacto(gluco) Mannan 838
20.5 Fungal Pectinolytic Enzymes 839
20.5.1 Hydrolases Acting on the Pectin Backbone 840
20.5.2 Lyases Actin on the Pectin Backbone 845
20.5.3 Acetyl and Methyl Esterases 847
20.5.4 Accessory Enzymes 849
20.5.5 Insights from Fungal Genomes 852
20.5.6 Pectinases as Virulence Factors 852
20.5.7 Applications of Pectinolytic Enzymes 853
20.6 Inulin and Sucrose Degradation 855
20.6.1 Enzymes Acting on Inulin and Sucrose 855
20.6.2 Conserved Domains of Inulinases 858
Contents
xix
20.6.3 Production of Inulinases 858
20.6.4 Insights from Fungal Genomes 859
20.6.5 Application of Inulinases 860
20.7 Degradation and Modification of Lactose 862
20.8 Degradation of Plant Oligo- and Polysaccharides by
Basidiomycetes 863
20.8.1 Cellulose and Xyloglucan Degrading Enzymes
of Basidiomycetes 863
20.8.2 Xylan Degrading Enzymes of Basidiomycetes 866
20.8.3 Degradation of Galacto(gluco)Mannan by
Basidiomycetes 868
20.8.4 Basidiomycete Pectinolytic Enzymes 868
20.8.5 Insights from Basidiomycete Genomes 869
20.9 Concluding Remarks and Prospects 870
21 Bacterial Strategies for Plant Cell Wall Degradation and
Their Genomic Information 897
Yutoko Tamoru and Roy H. Doi
21.1 Introduction 897
21.2 The Components of Plant Cell Wall and their
Bioconversion 898
21.3 Cellulolytic Bacteria and Fungi Isolated from
Natural Biomass 903
21.4 The Full Circle: From Microbial Communities to
Metagenomes 908
21.5 Searching for Lignocellulose Degrading Enzymes:
The Impact of Different Omics 909
21.6 Enzyme-Enzyme Synergy 910
21.7 Carbohydrate-Binding Module (CBM)-Mediated
GH Enzymes 911
21.8 The Fibrobacteres-Model” of Plant Cell Wall
Hydrolysis 912
21.9 Cellulosomal Complex Formation 913
21.10 The Clostridium Cellulovorans Cellulosome 914
21.11 Cellulosome-Producing Clostridial Genomes 917
21.12 Conclusion 917
XX
Contents
22 Heterologous Expression of Cellulolytic Enzymes 927
Christian Eckert, Rainer Fischer, and Ulrich Commandeur
22.1 Introduction 927
22.2 Cellulose 928
22.3 Cellulolytic Enzymes: The Key to Cellulose
Degradation 930
22.3.1 Endoglucanases 930
22.3.2 Exoglucanases 933
22.3.3 Carbohydrate-Binding Domains 933
22.3.4 Linker 934
22.3.5 p-Glucosidases 935
22.3.6 Cellulosomes 935
22.3.7 Auxiliary Activity Enzymes 937
22.3.7.1 Cell wall loosening enzymes 938
22.3.7.2 Lytic polysaccharide
monooxygenases 939
22.4 Sources for Cellulolytic Enzymes 940
22.4.1 Cellulases from Filamentous Fungi 940
22.4.2 Cellulases from Hyperthermophilic
Bacteria and Archaea 941
22.4.3 Cellulases from Insects 942
22.5 Heterologous Expression of Cellulolytic Enzymes
in Bacteria 944
22.6 Heterologous Expression of Cellulolytic Enzymes
in Yeasts 946
22.6.1 The Concept of Consolidated Bioprocessing 948
22.7 Heterologous Expression of Cellulolytic Enzymes
in Plants 951
22.8 Conclusions and Outlook 954
23 Engineered Minicellulosomes for Consolidated
Bioprocessing 965
Youyun Liang, Ee Lui Ang, and Huimin Zhao
23.1 Introduction 965
23.2 Brief Description of Naturally-Occurring
Cellulosomes 966
Contents I xxi
23.3 Considerations in Design of Engineered
Minicellulosomes 969
23.3.1 Cohesins and Dockerins Pairs 969
23.3.2 Cell Surface Anchorage 970
23.3.3 Substrate-Binding Domain 971
23.3.4 Catalytic Units 972
23.3.5 Configuration of Engineered Cellulosome 975
23.4 Engineered Cellulosomes in Different Host
Organisms 977
23.4.1 Engineered Cellulosomes in Yeast 977
23.4.2 Engineered Cellulosomes in
C Acetobutylicum 982
23.4.3 Engineered Cellulosomes in B. Subtilis 983
23.4.4 Engineered Cellulosomes in Other Organisms 984
23.5 Concluding Remarks 984
24 Design of Efficient Multienzymatic Reactions for
Cellulosic Biomass Processing 993
Anne S. Meyer
24.1 Introduction 993
24.2 The Cellulosic Biomass Substrate 994
24.3 Goals, Options, and Tools for Enzymatic Biomass
Decomposition 996
24.3.1 Goals of Enzymatic Biomass Degradation 996
24.3.2 T. reesei Cellulases and Options Available for
Reducing Cellulase Production Costs 999
24.3.3 Options and Tools Available for Improving
the Enzymatic Processing Step 1002
24.4 The Minimal Enzyme Mixture Approach 1003
24.5 Conclusions and Perspectives 1007
Index
1011
“This book represents a timely contribution to the field of carbohydrate-modifying enzymes. In
many respects, understanding tile chemistry and structural aspects of carbohydrates and their
interactions is particularly challenging for students and established scientists alike. The many
excellent chapters provide a comprehensive journey into the realm of carbohydrates, from the
basics to up-to-date approaches and applications. I recommend this book to my own students
and to all scientists interested in gaining advanced knowledge of carbohvdrate-modfying
enzymes in biological processes
Prof. Edward A. Bayer
Weizmann Institute of Science, Israel
“This is an excellent compilation of the latest research in the field of carbohydrate-modifying
biocatalvsts written by highly recognized experts in the field. With glycoscience and biocatalysis
emerging as fundamental contributors to a diverse array of scientific disciplines ranging from
pharmaceutical development to renewable energy, this book is particularly timely and should
seiwe as an excellent reference for inspiring scientists and students.
Prof. Jon S. Thorson
University of Wisconsin-Madison, USA
This book provides an actual overview of the structure, function, and application of
carbohydrate-modifying biocatalysts. Carbohydrates have been disregarded for a long
time by the scientific community, mainly due to their complex structure. Meanwhile, the
situation changed with increasing knowledge about the key role carbohydrates play in
biological processes such as recognition, signal transduction, immune responses, and
others. An outcome of research activities in glycoscience is the development of several new
pharmaceuticals against serious diseases such as malaria, cancer, and various storage
diseases. Furthermore, the employment of carbohydrate-modifying biocatalysts—
enzymes as well as microorganisms—will contribute significantly to the development
of environmentally friendly processes boosting a shift of the chemical industry from
petroleum-to bio-based production of chemicals from renewable resources.
The updated content of the second edition of this book has been extended by discussing
the current state of the art of using recombinantly expressed carbohydrate-modifying
biocatalysts and the synthesis of minicellulosomes in connection with consolidated
bioprocessing of lignocellulosic material. Furthermore, a synthetic biology approach for
using DAHP-dependent aldolases to catalyze asymmetric aldol reactions is presented.
■ Peter Grunwald studied chemistry at the University of Saarbrücken and the
University of Hamburg, Germany, where he graduated in the field of high-
frequency spectroscopy, and then became a staff member of the Institute
of Physical Chemistry. After receiving his PhD in physical chemistry from
the Department of Chemistry at the University of Hamburg, he founded
a biotechnology research group. He was appointed professor in 2001.
His research interests focus on the preparation and properties of immobilized enzymes,
kinetics of enzymes in organic solvents, and interactions between biocatalysts and heavy
metal ions. Prof. Grunwald is also interested in chemical education, including curriculum
development.
|
any_adam_object | 1 |
author2 | Grunwald, Peter 1941- |
author2_role | edt |
author2_variant | p g pg |
author_GND | (DE-588)1025209303 |
author_facet | Grunwald, Peter 1941- |
building | Verbundindex |
bvnumber | BV043863806 |
classification_rvk | VE 7040 VK 8580 WF 9785 |
ctrlnum | (OCoLC)992456548 (DE-599)HBZHT019130808 |
discipline | Chemie / Pharmazie Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02498nam a2200541 cb4500</leader><controlfield tag="001">BV043863806</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170505 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161107s2016 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814669788</subfield><subfield code="9">978-981-4669-78-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992456548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT019130808</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 7040</subfield><subfield code="0">(DE-625)147136:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 8580</subfield><subfield code="0">(DE-625)147542:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9785</subfield><subfield code="0">(DE-625)148467:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of carbohydrate-modifying biocatalysts</subfield><subfield code="c">edited by Peter Grunwald</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Pan Stanford Publishing</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvii, 1027 pages</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pan Stanford series on biocatalysis</subfield><subfield code="v">volume 2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biokatalyse</subfield><subfield code="0">(DE-588)4393622-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökologische Chemie</subfield><subfield code="0">(DE-588)4135167-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohlenhydrate</subfield><subfield code="0">(DE-588)4164517-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohlenhydrate</subfield><subfield code="0">(DE-588)4164517-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biokatalyse</subfield><subfield code="0">(DE-588)4393622-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ökologische Chemie</subfield><subfield code="0">(DE-588)4135167-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Biokatalyse</subfield><subfield code="0">(DE-588)4393622-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grunwald, Peter</subfield><subfield code="d">1941-</subfield><subfield code="0">(DE-588)1025209303</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-4669-79-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pan Stanford series on biocatalysis</subfield><subfield code="v">volume 2</subfield><subfield code="w">(DE-604)BV042670725</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029273849</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043863806 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:37:05Z |
institution | BVB |
isbn | 9789814669788 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029273849 |
oclc_num | 992456548 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xxvii, 1027 pages Illustrationen |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Pan Stanford Publishing |
record_format | marc |
series | Pan Stanford series on biocatalysis |
series2 | Pan Stanford series on biocatalysis |
spelling | Handbook of carbohydrate-modifying biocatalysts edited by Peter Grunwald Singapore Pan Stanford Publishing [2016] xxvii, 1027 pages Illustrationen txt rdacontent n rdamedia nc rdacarrier Pan Stanford series on biocatalysis volume 2 Biokatalyse (DE-588)4393622-2 gnd rswk-swf Ökologische Chemie (DE-588)4135167-8 gnd rswk-swf Katalyse (DE-588)4029921-1 gnd rswk-swf Biotechnologie (DE-588)4069491-4 gnd rswk-swf Kohlenhydrate (DE-588)4164517-0 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Katalyse (DE-588)4029921-1 s Kohlenhydrate (DE-588)4164517-0 s DE-604 Biokatalyse (DE-588)4393622-2 s Biotechnologie (DE-588)4069491-4 s Ökologische Chemie (DE-588)4135167-8 s Grunwald, Peter 1941- (DE-588)1025209303 edt Erscheint auch als Online-Ausgabe 978-981-4669-79-5 Pan Stanford series on biocatalysis volume 2 (DE-604)BV042670725 2 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Handbook of carbohydrate-modifying biocatalysts Pan Stanford series on biocatalysis Biokatalyse (DE-588)4393622-2 gnd Ökologische Chemie (DE-588)4135167-8 gnd Katalyse (DE-588)4029921-1 gnd Biotechnologie (DE-588)4069491-4 gnd Kohlenhydrate (DE-588)4164517-0 gnd |
subject_GND | (DE-588)4393622-2 (DE-588)4135167-8 (DE-588)4029921-1 (DE-588)4069491-4 (DE-588)4164517-0 (DE-588)4143413-4 |
title | Handbook of carbohydrate-modifying biocatalysts |
title_auth | Handbook of carbohydrate-modifying biocatalysts |
title_exact_search | Handbook of carbohydrate-modifying biocatalysts |
title_full | Handbook of carbohydrate-modifying biocatalysts edited by Peter Grunwald |
title_fullStr | Handbook of carbohydrate-modifying biocatalysts edited by Peter Grunwald |
title_full_unstemmed | Handbook of carbohydrate-modifying biocatalysts edited by Peter Grunwald |
title_short | Handbook of carbohydrate-modifying biocatalysts |
title_sort | handbook of carbohydrate modifying biocatalysts |
topic | Biokatalyse (DE-588)4393622-2 gnd Ökologische Chemie (DE-588)4135167-8 gnd Katalyse (DE-588)4029921-1 gnd Biotechnologie (DE-588)4069491-4 gnd Kohlenhydrate (DE-588)4164517-0 gnd |
topic_facet | Biokatalyse Ökologische Chemie Katalyse Biotechnologie Kohlenhydrate Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029273849&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV042670725 |
work_keys_str_mv | AT grunwaldpeter handbookofcarbohydratemodifyingbiocatalysts |