Music through Fourier space: discrete Fourier transform in music theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2016]
|
Schriftenreihe: | Computational music science
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XV, 206 Seiten Illustrationen, Diagramme, Notenbeispiele (teilweise farbig) |
ISBN: | 9783319455808 9783319833231 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043859071 | ||
003 | DE-604 | ||
005 | 20230222 | ||
007 | t | ||
008 | 161103s2016 agl| |||| 00||| eng d | ||
020 | |a 9783319455808 |c hbk |9 978-3-319-45580-8 | ||
020 | |a 9783319833231 |c pbk |9 978-3-319-83323-1 | ||
035 | |a (OCoLC)964660072 | ||
035 | |a (DE-599)BVBBV043859071 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-11 |a DE-20 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a LR 57780 |0 (DE-625)109887:13528 |2 rvk | ||
084 | |a ST 690 |0 (DE-625)143691: |2 rvk | ||
084 | |a 9,2 |2 ssgn | ||
100 | 1 | |a Amiot, Emmanuel |d 1961- |e Verfasser |0 (DE-588)1119480930 |4 aut | |
245 | 1 | 0 | |a Music through Fourier space |b discrete Fourier transform in music theory |c Emmanuel Amiot |
264 | 1 | |a Cham |b Springer |c [2016] | |
264 | 4 | |c ©2016 | |
300 | |a XV, 206 Seiten |b Illustrationen, Diagramme, Notenbeispiele (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Computational music science | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Music | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a User interfaces (Computer systems) | |
650 | 4 | |a Application software | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Computer Appl. in Arts and Humanities | |
650 | 4 | |a Mathematics in Music | |
650 | 4 | |a Mathematics of Computing | |
650 | 4 | |a User Interfaces and Human Computer Interaction | |
650 | 4 | |a Signal, Image and Speech Processing | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Musik | |
650 | 0 | 7 | |a Musiktheorie |0 (DE-588)4040876-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskrete Fourier-Transformation |0 (DE-588)4150175-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Musiktheorie |0 (DE-588)4040876-0 |D s |
689 | 0 | 1 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 2 | |a Diskrete Fourier-Transformation |0 (DE-588)4150175-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-45581-5 |
856 | 4 | 2 | |m Digitalisierung BSB Muenchen - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029269235&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029269235 | ||
942 | 1 | 1 | |c 780.051 |e 22/bsb |
942 | 1 | 1 | |c 781 |e 22/bsb |
Datensatz im Suchindex
_version_ | 1804176738034384896 |
---|---|
adam_text | Contents
1 Discrete Fourier Transform of Distributions.......................... 1
1.1 Mathematical definitions and preliminary results................ 1
1.1.1 From pc-sets to an algebra of distributions ................ 1
1.1.2 Introducing the Fourier transform........................... 4
1.1.3 Basic notions............................................. 5
1.2 DFT of subsets................................................... 9
1.2.1 What stems from the general definition...................... 9
1.2.2 Application to intervallic structure...................... 14
1.2.3 Circulant matrixes ........................................ 18
1.2.4 Polynomials ............................................... 22
2 Homometry and the Phase Retrieval Problem............................ 27
2.1 Spectral units.................................................. 29
2.1.1 Moving between two homometric distributions................ 30
2.1.2 Chosen spectral units.................................... 31
2.1.3 Rational spectral units with finite order.................. 32
2.1.4 Orbits for homometric sets................................. 40
2.2 Extensions and generalisations.................................. 41
2.2.1 Hexachordal theorems....................................... 41
2.2.2 Phase retrieval even for some singular cases............... 44
2.2.3 Higher order homometry..................................... 45
3 Nil Fourier Coefficients and Tilings................................. 51
3.1 The Fourier nil set of a subset of Zrt.......................... 52
3.1.1 The original caveat........................................ 52
3.1.2 Singular circulating matrixes ............................. 55
3.1.3 Structure of the zero set of the DFT of a pc-set........... 58
3.2 Tilings of Z* by translation...................................... 61
3.2.1 Rhythmic canons in general............................... 61
3.2.2 Characterisation of tiling sets............................ 63
3.2.3 The Coven-Meyerowitz conditions............................ 65
XIV Contents
3.2.4 Inner periodicities....................................... 67
3.2.5 Transformations......................................... 69
3.2.6 Some conjectures and routes to solve them................. 77
3.3 Algorithms....................................................... 80
3.3.1 Computing a DFT........................................... 80
3.3.2 Phase retrieval........................................... 82
3.3.3 Linear programming ....................................... 82
3.3.4 Searching for Vuza canons................................. 83
4 Saliency............................................................... 91
4.1 Generated scales .............................................. 92
4.1.1 Saturation in one interval................................ 93
4.1.2 DFT of a generated scale.................................. 94
4.1.3 Alternative generators.................................... 96
4.2 Maximal evenness................................................ 99
4.2.1 Some regularity features................................. 100
4.2.2 Three types of ME sets................................... 101
4.2.3 DFT definition of ME sets.............................. 104
4.3 Pc-sets with large Fourier coefficients......................... 108
4.3.1 Maximal values......................................... 108
4.3.2 Musical meaning ........................................ 113
4.3.3 Flat distributions....................................... 123
5 Continuous Spaces, Continuous FT...................................... 135
5.1 Getting continuous.............................................. 135
5.2 A DFT for ordered collections of pcs on the continuous circle.. 140
5.3 ‘Diatonicity’ of temperaments in archeo-musicology............. 142
5.4 Fourier vs. voice leading distances............................ 145
5.5 Playing in Fourier space........................................ 149
5.5.1 Fourier scratching....................................... 149
5.5.2 Creation in Fourier space................................ 151
5.5.3 Psycho-acoustic experimentation.......................... 153
6 Phases of Fourier Coefficients........................................ 157
6.1 Moving one Fourier coefficient.................................. 157
6.2 Focusing on phases.............................................. 159
6.2.1 Defining the torus of phases............................. 160
6.2.2 Phases between tonal or atonal music..................... 166
6.3 Central symmetry in the torus of phases......................... 170
6.3.1 Linear embedding of the T/I group........................ 170
6.3.2 Topological implications................................. 173
6.3.3 Explanation of the quasi-alignment of major and minor triads 177
7 Conclusion
179
Contents
XV
8 Annexes and Tables..................................................... 183
8.1 Solutions to some exercises .................................... 183
8.2 Lewin’s ‘special cases’......................................... 188
8.3 Some pc-sets profiles ........................................... 189
8.4 Phases of major/minor triads..................................... 196
8.5 Very symmetrically decomposable hexachords....................... 197
8.6 Major Scales Similarity ......................................... 197
References................................................................. 199
Index
205
|
any_adam_object | 1 |
author | Amiot, Emmanuel 1961- |
author_GND | (DE-588)1119480930 |
author_facet | Amiot, Emmanuel 1961- |
author_role | aut |
author_sort | Amiot, Emmanuel 1961- |
author_variant | e a ea |
building | Verbundindex |
bvnumber | BV043859071 |
classification_rvk | LR 57780 ST 690 |
ctrlnum | (OCoLC)964660072 (DE-599)BVBBV043859071 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Musikwissenschaft |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02561nam a2200661 c 4500</leader><controlfield tag="001">BV043859071</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230222 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161103s2016 agl| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319455808</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-319-45580-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319833231</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-319-83323-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)964660072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043859071</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LR 57780</subfield><subfield code="0">(DE-625)109887:13528</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 690</subfield><subfield code="0">(DE-625)143691:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">9,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amiot, Emmanuel</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1119480930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Music through Fourier space</subfield><subfield code="b">discrete Fourier transform in music theory</subfield><subfield code="c">Emmanuel Amiot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 206 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Notenbeispiele (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational music science</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Music</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">User interfaces (Computer systems)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Application software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Appl. in Arts and Humanities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics in Music</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics of Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">User Interfaces and Human Computer Interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Musik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Musiktheorie</subfield><subfield code="0">(DE-588)4040876-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Musiktheorie</subfield><subfield code="0">(DE-588)4040876-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-45581-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB Muenchen - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029269235&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029269235</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">780.051</subfield><subfield code="e">22/bsb</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">781</subfield><subfield code="e">22/bsb</subfield></datafield></record></collection> |
id | DE-604.BV043859071 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:36:57Z |
institution | BVB |
isbn | 9783319455808 9783319833231 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029269235 |
oclc_num | 964660072 |
open_access_boolean | |
owner | DE-12 DE-11 DE-20 |
owner_facet | DE-12 DE-11 DE-20 |
physical | XV, 206 Seiten Illustrationen, Diagramme, Notenbeispiele (teilweise farbig) |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series2 | Computational music science |
spelling | Amiot, Emmanuel 1961- Verfasser (DE-588)1119480930 aut Music through Fourier space discrete Fourier transform in music theory Emmanuel Amiot Cham Springer [2016] ©2016 XV, 206 Seiten Illustrationen, Diagramme, Notenbeispiele (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier Computational music science Hier auch später erschienene, unveränderte Nachdrucke Computer science Music Computer science / Mathematics User interfaces (Computer systems) Application software Mathematics Computer Science Computer Appl. in Arts and Humanities Mathematics in Music Mathematics of Computing User Interfaces and Human Computer Interaction Signal, Image and Speech Processing Informatik Mathematik Musik Musiktheorie (DE-588)4040876-0 gnd rswk-swf Diskrete Fourier-Transformation (DE-588)4150175-5 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Musiktheorie (DE-588)4040876-0 s Informatik (DE-588)4026894-9 s Diskrete Fourier-Transformation (DE-588)4150175-5 s DE-604 Erscheint auch als Online-Ausgabe 978-3-319-45581-5 Digitalisierung BSB Muenchen - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029269235&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Amiot, Emmanuel 1961- Music through Fourier space discrete Fourier transform in music theory Computer science Music Computer science / Mathematics User interfaces (Computer systems) Application software Mathematics Computer Science Computer Appl. in Arts and Humanities Mathematics in Music Mathematics of Computing User Interfaces and Human Computer Interaction Signal, Image and Speech Processing Informatik Mathematik Musik Musiktheorie (DE-588)4040876-0 gnd Diskrete Fourier-Transformation (DE-588)4150175-5 gnd Informatik (DE-588)4026894-9 gnd |
subject_GND | (DE-588)4040876-0 (DE-588)4150175-5 (DE-588)4026894-9 |
title | Music through Fourier space discrete Fourier transform in music theory |
title_auth | Music through Fourier space discrete Fourier transform in music theory |
title_exact_search | Music through Fourier space discrete Fourier transform in music theory |
title_full | Music through Fourier space discrete Fourier transform in music theory Emmanuel Amiot |
title_fullStr | Music through Fourier space discrete Fourier transform in music theory Emmanuel Amiot |
title_full_unstemmed | Music through Fourier space discrete Fourier transform in music theory Emmanuel Amiot |
title_short | Music through Fourier space |
title_sort | music through fourier space discrete fourier transform in music theory |
title_sub | discrete Fourier transform in music theory |
topic | Computer science Music Computer science / Mathematics User interfaces (Computer systems) Application software Mathematics Computer Science Computer Appl. in Arts and Humanities Mathematics in Music Mathematics of Computing User Interfaces and Human Computer Interaction Signal, Image and Speech Processing Informatik Mathematik Musik Musiktheorie (DE-588)4040876-0 gnd Diskrete Fourier-Transformation (DE-588)4150175-5 gnd Informatik (DE-588)4026894-9 gnd |
topic_facet | Computer science Music Computer science / Mathematics User interfaces (Computer systems) Application software Mathematics Computer Science Computer Appl. in Arts and Humanities Mathematics in Music Mathematics of Computing User Interfaces and Human Computer Interaction Signal, Image and Speech Processing Informatik Mathematik Musik Musiktheorie Diskrete Fourier-Transformation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029269235&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT amiotemmanuel musicthroughfourierspacediscretefouriertransforminmusictheory |