Basic theory of fractional differential equations:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2017]
|
Ausgabe: | second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xii, 367 Seiten |
ISBN: | 9789813148161 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043848279 | ||
003 | DE-604 | ||
005 | 20170809 | ||
007 | t | ||
008 | 161026s2017 xxu |||| 00||| eng d | ||
010 | |a 016032558 | ||
020 | |a 9789813148161 |9 978-981-3148-16-1 | ||
035 | |a (OCoLC)969908156 | ||
035 | |a (DE-599)BVBBV043848279 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-29T |a DE-703 | ||
050 | 0 | |a QA372 | |
082 | 0 | |a 515/.352 |2 23 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a MAT 349f |2 stub | ||
100 | 1 | |a Zhou, Yong |d 1964- |e Verfasser |0 (DE-588)1062995449 |4 aut | |
245 | 1 | 0 | |a Basic theory of fractional differential equations |c Yong Zhou (Xiangtan University, China), JinRong Wang (Guizhou University, China), Lu Zhang (Xiangtan University, China) |
250 | |a second edition | ||
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2017] | |
300 | |a xii, 367 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Fractional differential equations | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Fractional calculus | |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gebrochene Analysis |0 (DE-588)4722475-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ableitung gebrochener Ordnung |0 (DE-588)4365956-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Ableitung gebrochener Ordnung |0 (DE-588)4365956-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gebrochene Analysis |0 (DE-588)4722475-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wang, JinRong |e Verfasser |4 aut | |
700 | 1 | |a Zhang, Lu |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029258664 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176719484026880 |
---|---|
adam_text | Contents
Preface to the Second Edition v
Preface to the First Edition vii
1. Preliminaries 1
1.1 Introduction........................................................ 1
1.2 Some Notations, Concepts and Lemmas................................ 1
1.3 Fractional Calculus................................................. 3
1.3.1 Definitions.................................................. 4
1.3.2 Properties .................................................. 9
1.3.3 Mittag-Leffier functions.................................... 12
1.4 Some Results from Nonlinear Analysis............................... 13
1.4.1 Sobolev Spaces.............................................. 13
1.4.2 Measure of Noncompactness................................... 14
1.4.3 Topological Degree.......................................... 15
1.4.4 Picard Operator............................................. 17
1.4.5 Fixed Point Theorems........................................ 18
1.4.6 Critical Point Theorems..................................... 20
1.5 Semigroups......................................................... 22
1.5.1 C{)-semigroup............................................... 22
1.5.2 Almost Sectorial Operators.................................. 23
2. Fractional Functional Differential Equations 27
2.1 Introduction....................................................... 27
2.2 Neutral Equations with Bounded Delay ............................. 28
2.2.1 Introduction................................................ 28
2.2.2 Existence and Uniqueness.................................... 28
2.2.3 Extremal Solutions ......................................... 33
2.3 p-Type Neutral Equations.......................................... 42
2.3.1 Introduction................................................ 42
2.3.2 Existence and Uniqueness.................................... 44
ix
x Basic Theory of Fractional Differential Equations
2.3.3 Continuous Dependence.................................. 55
2.4 Neutral Equations with Infinite Delay ......................... 58
2.4.1 Introduction........................................... 58
2.4.2 Existence and Uniqueness............................... 60
2.4.3 Continuation of Solutions.............................. 67
2.5 Iterative Functional Differential Equations.................... 71
2.5.1 Introduction........................................... 71
2.5.2 Existence ............................................. 72
2.5.3 Data Dependence........................................ 78
2.5.4 Examples and General Cases............................. 79
2.6 Notes and Remarks................................................ 86
3. Fractional Ordinary Differential Equations in Banach Spaces 87
3.1 Introduction..................................................... 87
3.2 Cauchy Problems via Measure of Noncompactness Method .... 89
3.2.1 Introduction............................................. 89
3.2.2 Existence................................................ 89
3.3 Cauchy Problems via Topological Degree Method.................... 98
3.3.1 Introduction............................................. 98
3.3.2 Qualitative Analysis..................................... 98
3.4 Cauchy Problems via Picard Operators Technique...................102
3.4.1 Introduction.............................................102
3.4.2 Results via Picard Operators.............................102
3.4.3 Results via Weakly Picard Operators......................109
3.5 Notes and Remarks................................................113
4. Fractional Abstract Evolution Equations 115
4.1 Introduction.....................................................115
4.2 Evolution Equations with Riemann-Liouville Derivative ...........116
4.2.1 Introduction.............................................116
4.2.2 Definition of Mild Solutions.............................117
4.2.3 Preliminary Lemmas ......................................120
4.2.4 Compact Semigroup Case...................................126
4.2.5 Noncompact Semigroup Case................................131
4.3 Evolution Equations with Caputo Derivative.......................134
4.3.1 Introduction.............................................134
4.3.2 Definition of Mild Solutions.............................134
4.3.3 Preliminary Lemmas ......................................136
4.3.4 Compact Semigroup Case...................................140
4.3.5 Noncompact Semigroup Case................................143
4.4 Nonlocal Problems for Evolution Equations........................145
4.4.1 Introduction.............................................145
Contents xi
4.4.2 Definition of mild solutions...............................145
4.4.3 Existence..................................................147
4.5 Abstract Cauchy Problems with Almost Sectorial Operators .... 153
4.5.1 Introduction...............................................153
4.5.2 Properties of Operators....................................158
4.5.3 Linear Problems............................................164
4.5.4 Nonlinear Problems.........................................169
4.5.5 Applications...............................................177
4.6 Notes and Remarks..................................................179
5. Fractional Impulsive Differential Equations 181
5.1 Introduction.......................................................181
5.2 Impulsive Initial Value Problems...................................182
5.2.1 Introduction...............................................182
5.2.2 Formula of Solutions.......................................182
5.2.3 Existence..................................................185
5.3 Impulsive Boundary Value Problems..................................190
5.3.1 Introduction...............................................190
5.3.2 Formula of Solutions.......................................190
5.3.3 Existence..................................................193
5.4 Impulsive Langevin Equations.......................................197
5.4.1 Introduction...............................................197
5.4.2 Formula of Solutions.......................................198
5.4.3 Existence..................................................206
5.5 Impulsive Evolution Equations .....................................213
5.5.1 Introduction...............................................213
5.5.2 Cauchy Problems ...........................................214
5.5.3 Nonlocal Problems..........................................216
5.6 Notes and Remarks..................................................222
6. Fractional Boundary Value Problems 223
6.1 Introduction.......................................................223
6.2 Solution for В VP with Left and Right Fractional Integrals.........223
6.2.1 Introduction...............................................223
6.2.2 Fractional Derivative Space................................226
6.2.3 Variational Structure......................................231
6.2.4 Existence Under Ambrosetti-Rabinowitz Condition .... 238
6.2.5 Superquadratic Case........................................243
6.2.6 Asymptotically Quadratic Case..............................247
6.3 Multiple Solutions for BVP with Parameters.........................250
6.3.1 Introduction...............................................250
6.3.2 Existence..................................................251
Xll
Basic Theory of Fractional Differential Equations
6.4 Infinite Solutions for В VP with Left and Right Fractional
Integrals..........................................................261
6.4.1 Introduction...............................................261
6.4.2 Existence..................................................262
6.5 Solutions for BVP with Left and Right Fractional Derivatives . . . 271
6.5.1 Introduction...............................................271
6.5.2 Variational Structure......................................272
6.5.3 Existence of Weak Solutions................................275
6.5.4 Existence of Solutions.....................................279
6.6 Notes and Remarks..................................................283
7. Fractional Partial Differential Equations 285
7.1 Introduction.......................................................285
7.2 Fractional Navier-Stokes Equations.................................285
7.2.1 Introduction...............................................285
7.2.2 Preliminaries..............................................287
7.2.3 Global Existence...........................................290
7.2.4 Local Existence ...........................................297
7.2.5 Regularity.................................................301
7.3 Fractional Euler-Lagrange Equations................................309
7.3.1 Introduction...............................................309
7.3.2 Functional Spaces..........................................311
7.3.3 Variational Structure......................................314
7.3.4 Existence of Weak Solution.................................317
7.4 Fractional Diffusion Equations.....................................321
7.4.1 Introduction...............................................321
7.4.2 Preliminaries..............................................324
7.4.3 Existence and Regularity...................................327
7.5 Fractional Schrodinger Equations...................................336
7.5.1 Introduction...............................................336
7.5.2 Preliminaries..............................................337
7.5.3 Existence and Uniqueness...................................340
7.6 Notes and Remarks..................................................342
Bibliography 343
Index 363
|
any_adam_object | 1 |
author | Zhou, Yong 1964- Wang, JinRong Zhang, Lu |
author_GND | (DE-588)1062995449 |
author_facet | Zhou, Yong 1964- Wang, JinRong Zhang, Lu |
author_role | aut aut aut |
author_sort | Zhou, Yong 1964- |
author_variant | y z yz j w jw l z lz |
building | Verbundindex |
bvnumber | BV043848279 |
callnumber-first | Q - Science |
callnumber-label | QA372 |
callnumber-raw | QA372 |
callnumber-search | QA372 |
callnumber-sort | QA 3372 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 520 |
classification_tum | MAT 349f |
ctrlnum | (OCoLC)969908156 (DE-599)BVBBV043848279 |
dewey-full | 515/.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.352 |
dewey-search | 515/.352 |
dewey-sort | 3515 3352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02255nam a2200529 c 4500</leader><controlfield tag="001">BV043848279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170809 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161026s2017 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016032558</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813148161</subfield><subfield code="9">978-981-3148-16-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)969908156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043848279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA372</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 349f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Yong</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1062995449</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic theory of fractional differential equations</subfield><subfield code="c">Yong Zhou (Xiangtan University, China), JinRong Wang (Guizhou University, China), Lu Zhang (Xiangtan University, China)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 367 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gebrochene Analysis</subfield><subfield code="0">(DE-588)4722475-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ableitung gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ableitung gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gebrochene Analysis</subfield><subfield code="0">(DE-588)4722475-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, JinRong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029258664</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043848279 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:36:39Z |
institution | BVB |
isbn | 9789813148161 |
language | English |
lccn | 016032558 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029258664 |
oclc_num | 969908156 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-29T DE-703 |
owner_facet | DE-91G DE-BY-TUM DE-29T DE-703 |
physical | xii, 367 Seiten |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific |
record_format | marc |
spelling | Zhou, Yong 1964- Verfasser (DE-588)1062995449 aut Basic theory of fractional differential equations Yong Zhou (Xiangtan University, China), JinRong Wang (Guizhou University, China), Lu Zhang (Xiangtan University, China) second edition New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2017] xii, 367 Seiten txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Fractional differential equations Differential equations Fractional calculus Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Gebrochene Analysis (DE-588)4722475-7 gnd rswk-swf Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Ableitung gebrochener Ordnung (DE-588)4365956-1 s DE-604 Gebrochene Analysis (DE-588)4722475-7 s 1\p DE-604 Wang, JinRong Verfasser aut Zhang, Lu Verfasser aut Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zhou, Yong 1964- Wang, JinRong Zhang, Lu Basic theory of fractional differential equations Fractional differential equations Differential equations Fractional calculus Differentialgleichung (DE-588)4012249-9 gnd Gebrochene Analysis (DE-588)4722475-7 gnd Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd |
subject_GND | (DE-588)4012249-9 (DE-588)4722475-7 (DE-588)4365956-1 |
title | Basic theory of fractional differential equations |
title_auth | Basic theory of fractional differential equations |
title_exact_search | Basic theory of fractional differential equations |
title_full | Basic theory of fractional differential equations Yong Zhou (Xiangtan University, China), JinRong Wang (Guizhou University, China), Lu Zhang (Xiangtan University, China) |
title_fullStr | Basic theory of fractional differential equations Yong Zhou (Xiangtan University, China), JinRong Wang (Guizhou University, China), Lu Zhang (Xiangtan University, China) |
title_full_unstemmed | Basic theory of fractional differential equations Yong Zhou (Xiangtan University, China), JinRong Wang (Guizhou University, China), Lu Zhang (Xiangtan University, China) |
title_short | Basic theory of fractional differential equations |
title_sort | basic theory of fractional differential equations |
topic | Fractional differential equations Differential equations Fractional calculus Differentialgleichung (DE-588)4012249-9 gnd Gebrochene Analysis (DE-588)4722475-7 gnd Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd |
topic_facet | Fractional differential equations Differential equations Fractional calculus Differentialgleichung Gebrochene Analysis Ableitung gebrochener Ordnung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhouyong basictheoryoffractionaldifferentialequations AT wangjinrong basictheoryoffractionaldifferentialequations AT zhanglu basictheoryoffractionaldifferentialequations |