Analysis on Gaussian spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2017]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xi, 470 Seiten |
ISBN: | 9789813142176 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043848249 | ||
003 | DE-604 | ||
005 | 20180110 | ||
007 | t | ||
008 | 161026s2017 |||| 00||| eng d | ||
020 | |a 9789813142176 |c hardcover |9 978-981-3142-17-6 | ||
035 | |a (OCoLC)960942560 | ||
035 | |a (DE-599)OBVAC13354334 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-824 |a DE-739 |a DE-19 |a DE-384 | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 280f |2 stub | ||
100 | 1 | |a Hu, Yaozhong |e Verfasser |0 (DE-588)171537858 |4 aut | |
245 | 1 | 0 | |a Analysis on Gaussian spaces |c Yaozhong Hu, University of Kansas, USA |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xi, 470 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gauß-Maß |0 (DE-588)4156113-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | 1 | |a Gauß-Maß |0 (DE-588)4156113-2 |D s |
689 | 0 | 2 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258635&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029258635 |
Datensatz im Suchindex
_version_ | 1804176719421112320 |
---|---|
adam_text | Contents
Preface vii
1. Introduction 1
2. Garsia-Rodemich-Rumsey Inequality 7
2.1 Metric Garsia-Rodemich-Rumsey Inequality............. 7
2.2 Volume Metric Garsia-Rodemich-Rumsey Inequality ... 11
2.3 Sample Path Holder Continuity of Random Fields....... 16
3. Analysis With Respect to Gaussian Measure in 19
3.1 Gaussian Measure in .................................... 19
3.2 Some Inequalities Related to Gaussian Measure........ 21
3.3 Brunn-Minkowski Inequality........................... 27
3.4 Hermite Polynomials.................................. 35
3.5 Spectral Gap and Logarithmic Sobolev Inequalities ... 43
3.6 Variance Identity and Inequality ....................... 47
3.7 Correlation Inequality............................... 48
3.8 Hyp ercontr activity................................. 51
3.9 Hermite Polynomials in Physics and Hermite Functions . 54
3.10 Segal-Bargmann Space and Complex Hermite Polynomials 58
3.11 Segal-Bargmann Transform............................. 63
4. Gaussian Measures on Banach Space 67
4.1 Random Variables in Banach Space..................... 67
4.2 Abstract Wiener Space................................ 80
4.3 Canonical Wiener Space............................... 88
ix
90
96
103
103
112
117
126
133
139
153
153
163
169
177
182
187
194
201
211
219
219
231
236
241
257
265
268
273
273
276
280
290
Analysis on Gaussian space
4.4 Right Tail Estimate....................................
4.5 Small Ball (Left Tail) Estimate........................
Nonlinear Functionals on Abstract Wiener Space
5.1 Fock Space and Chaos Expansion.........................
5.2 Polarization...........................................
5.3 Multiple WienerTt6 Integrals...........................
5.4 Multiple Stratonovich Integrals........................
5.5 Right Tail Estimate for Homogeneous Chaos..............
5.6 Chaos Expansion of Exit Time and Skeleton of Wiener
Functional.............................................
Analysis of Nonlinear Wiener Functionals
6.1 Gross-Sobolev Derivatives..............................
6.2 Divergence Operator....................................
6.3 Regularity of Density of Wiener Functional.............
6.4 Girsanov Transformation: Finite Dimension..............
6.5 Girsanov-Ramer Theorem in Abstract Wiener Space . . .
6.6 Wick Product...........................................
6.7 Wick Renormalization...................................
6.8 (Noncommutative) Composition of Wiener Functional . .
6.9 Stop Brownian Motion at Anticipative Exit Time.........
Some Inequalities
7.1 Complex Hypercontractivity.............................
7.2 Meyer’s Inequality.....................................
7.3 Multiplier Theorem.....................................
7.4 Littlewood-Paley-Stein-Meyer Theory ...................
7.5 Meyer’s Inequalities Revisited ........................
7.6 Interpolation Inequality...............................
7.7 Grothendieck Inequality................................
Convergence in Density
8.1 General Nonlinear Wiener Functional....................
8.2 Weak Convergence.......................................
8.3 Representation of the Derivatives of the Density.......
8.4 Random Variables in the g-th Wiener Chaos..............
Contents xi
8*5 Uniform Estimation of Difference of Derivatives
of Densities............................................ 292
8.6 Density Convergence of Higher Rank Hermite Polynomials 297
9. Local Time and (Self-) Intersection Local Time 311
9.1 Local Time of Brownian Motion........................... 311
9.2 Chaos Expansion of Self-intersection Local Time......... 314
9*3 Exponential Integrability............................... 320
9.4 Renormalization When d 3.............................. 324
9.5 L2-Modulus of Continuity of Local Time
of Brownian Motion ..................................... 329
10. Stochastic Differential Equation 341
10.1 Existence, Uniqueness and Non-explosion ................ 341
10.2 Hörmander Theorem....................................... 347
10.3 Exponential Integrability............................... 364
10.4 Itö-Wiener Chaos Expansion ............................. 371
10.5 FKG Inequality and Variance Inequality.................. 373
10.6 Hypercontractivity, Spectral and Logarithmic Sobolev In-
equality ..................................................... 376
10.7 Convergence to Density for Ergodic Diffusion............ 384
11. Numerical Approximation of Stochastic Differential Eequation 395
11.1 Lp-Convergence Rate..................................... 395
11.2 Convergence in and Convergence in Density.............. 403
11.3 Weak Convergence Rate................................... 417
11.4 Wong-Zakai Approximation................................ 421
Appendix A Appendix 427
A.l Some Elementary Results from Analysis................... 427
A. 2 Martingales............................................. 439
Bibliography 453
Index 467
|
any_adam_object | 1 |
author | Hu, Yaozhong |
author_GND | (DE-588)171537858 |
author_facet | Hu, Yaozhong |
author_role | aut |
author_sort | Hu, Yaozhong |
author_variant | y h yh |
building | Verbundindex |
bvnumber | BV043848249 |
classification_rvk | SK 820 |
classification_tum | MAT 280f |
ctrlnum | (OCoLC)960942560 (DE-599)OBVAC13354334 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01630nam a2200385 c 4500</leader><controlfield tag="001">BV043848249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180110 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161026s2017 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813142176</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-981-3142-17-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960942560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC13354334</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 280f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Yaozhong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171537858</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on Gaussian spaces</subfield><subfield code="c">Yaozhong Hu, University of Kansas, USA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 470 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauß-Maß</subfield><subfield code="0">(DE-588)4156113-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gauß-Maß</subfield><subfield code="0">(DE-588)4156113-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258635&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029258635</subfield></datafield></record></collection> |
id | DE-604.BV043848249 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:36:39Z |
institution | BVB |
isbn | 9789813142176 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029258635 |
oclc_num | 960942560 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-824 DE-739 DE-19 DE-BY-UBM DE-384 |
owner_facet | DE-91G DE-BY-TUM DE-824 DE-739 DE-19 DE-BY-UBM DE-384 |
physical | xi, 470 Seiten |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific |
record_format | marc |
spelling | Hu, Yaozhong Verfasser (DE-588)171537858 aut Analysis on Gaussian spaces Yaozhong Hu, University of Kansas, USA New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2017] © 2017 xi, 470 Seiten txt rdacontent n rdamedia nc rdacarrier Maßtheorie (DE-588)4074626-4 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Gauß-Maß (DE-588)4156113-2 gnd rswk-swf Maßtheorie (DE-588)4074626-4 s Gauß-Maß (DE-588)4156113-2 s Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s DE-604 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258635&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hu, Yaozhong Analysis on Gaussian spaces Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Gauß-Maß (DE-588)4156113-2 gnd |
subject_GND | (DE-588)4074626-4 (DE-588)4064324-4 (DE-588)4156113-2 |
title | Analysis on Gaussian spaces |
title_auth | Analysis on Gaussian spaces |
title_exact_search | Analysis on Gaussian spaces |
title_full | Analysis on Gaussian spaces Yaozhong Hu, University of Kansas, USA |
title_fullStr | Analysis on Gaussian spaces Yaozhong Hu, University of Kansas, USA |
title_full_unstemmed | Analysis on Gaussian spaces Yaozhong Hu, University of Kansas, USA |
title_short | Analysis on Gaussian spaces |
title_sort | analysis on gaussian spaces |
topic | Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Gauß-Maß (DE-588)4156113-2 gnd |
topic_facet | Maßtheorie Wahrscheinlichkeitsrechnung Gauß-Maß |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029258635&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT huyaozhong analysisongaussianspaces |