Spark: big data cluster computing in production
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ganelin, Ilya (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Indianapolis, IN Wiley 2016
Schlagworte:
Online-Zugang:FHI01
FRO01
UBG01
Volltext
Beschreibung:Description based upon print version of record
Spark™ Big Data Cluster Computing in Production; About the Authors; About the Technical Editors; Credits; Acknowledgments; Contents at a glance; Contents; Introduction; Chapter 1 Finishing Your Spark Job; Installation of the Necessary Components; Native Installation Using a Spark Standalone Cluster; The History of Distributed Computing That Led to Spark; Enter the Cloud; Understanding Resource Management; Using Various Formats for Storage; Text Files; Sequence Files; Avro Files; Parquet Files; Making Sense of Monitoring and Instrumentation; Spark UI; Spark Standalone UI; Metrics REST API
Metrics SystemExternal Monitoring Tools; Summary; Chapter 2 Cluster Management; Background; Spark Components; Driver; Workers and Executors; Configuration; Spark Standalone; Architecture; Single-Node Setup Scenario; Multi-Node Setup; YARN; Architecture; Dynamic Resource Allocation; Scenario; Mesos; Setup; Architecture; Dynamic Resource Allocation; Basic Setup Scenario; Comparison; Summary; Chapter 3 Performance Tuning; Spark Execution Model; Partitioning; Controlling Parallelism; Partitioners; Shuffling Data; Shuffling and Data Partitioning; Operators and Shuffling
Shuffling Is Not That Bad After AllSerialization; Kryo Registrators; Spark Cache; Spark SQL Cache; Memory Management; Garbage Collection; Shared Variables; Broadcast Variables; Accumulators; Data Locality; Summary; Chapter 4 Security; Architecture; Security Manager; Setup Configurations; ACL; Configuration; Job Submission; Web UI; Network Security; Encryption; Event logging; Kerberos; Apache Sentry; Summary; Chapter 5 Fault Tolerance or Job Execution; Lifecycle of a Spark Job; Spark Master; Spark Driver; Spark Worker; Job Lifecycle; Job Scheduling; Scheduling within an Application
Scheduling with External UtilitiesFault Tolerance; Internal and External Fault Tolerance; Service Level Agreements (SLAs); Resilient Distributed Datasets (RDDs); Batch versus Streaming; Testing Strategies; Recommended Configurations; Summary; Chapter 6 Beyond Spark; Data Warehousing; Spark SQL CLI; Thrift JDBC/ODBC Server; Hive on Spark; Machine Learning; DataFrame; MLlib and ML; Mahout on Spark; Hivemall on Spark; External Frameworks; Spark Package; XGBoost; spark-jobserver; Future Works; Integration with the Parameter Server; Deep Learning; Enterprise Usage
Collecting User Activity Log with Spark and KafkaReal-Time Recommendation with Spark; Real-Time Categorization of Twitter Bots; Summary; Index; EULA
Beschreibung:1 Online-Ressource (219 Seiten)
ISBN:1119254043
1119254051
1119254809
9781119254041
9781119254058
9781119254805

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen