Metal sustainability: global challenges, consequences, and prospects
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester, West Sussex
John Wiley & Sons, Ltd.
2016
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 527 Seiten Diagramme, Karten |
ISBN: | 9781119009108 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043822829 | ||
003 | DE-604 | ||
005 | 20170406 | ||
007 | t | ||
008 | 161012s2016 |||| |||| 00||| eng d | ||
020 | |a 9781119009108 |c (cloth) |9 978-1-119-00910-8 | ||
035 | |a (OCoLC)959549543 | ||
035 | |a (DE-599)BVBBV043822829 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 | ||
082 | 0 | |a 669.042 | |
084 | |a RB 10693 |0 (DE-625)142220:12825 |2 rvk | ||
084 | |a UQ 7000 |0 (DE-625)146565: |2 rvk | ||
245 | 1 | 0 | |a Metal sustainability |b global challenges, consequences, and prospects |c edited by Reed M. Izatt, IBC Advanced Technologies, Inc., American Fork, Utah, and Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah |
264 | 1 | |a Chichester, West Sussex |b John Wiley & Sons, Ltd. |c 2016 | |
300 | |a XXII, 527 Seiten |b Diagramme, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Includes bibliographical references and index | |
650 | 4 | |a Metals | |
650 | 4 | |a Metals / Fatigue | |
650 | 4 | |a Metallurgy | |
650 | 4 | |a Nonferrous metals / Metallurgy | |
650 | 4 | |a Metals / Recycling | |
650 | 4 | |a Fracture mechanics | |
650 | 7 | |a Fracture mechanics |2 fast | |
650 | 7 | |a Metallurgy |2 fast | |
650 | 7 | |a Metals |2 fast | |
650 | 7 | |a Metals / Fatigue |2 fast | |
650 | 7 | |a Metals / Recycling |2 fast | |
650 | 7 | |a Nonferrous metals / Metallurgy |2 fast | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Metallurgy |2 bisacsh | |
650 | 0 | 7 | |a Metallwirtschaft |0 (DE-588)4191462-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Metallwirtschaft |0 (DE-588)4191462-4 |D s |
689 | 0 | 1 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Izatt, Reed M. |d 1926- |0 (DE-588)1113688882 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029233789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029233789 |
Datensatz im Suchindex
_version_ | 1804176679821639680 |
---|---|
adam_text | Contents
List of Contributors xvii
Preface xxi
Acknowledgments xxiii
1 Recycling and Sustainable Utilization of Precious and Specialty Metals 1
Reed M. Izatt and Christian HagelUken
1.1 Introduction 1
1.2 How did we come to this Situation? 4
1.3 Magnitude of the Waste Problem and Disposal of End-of-Life Products 7
1.4 Benefits Derived by the Global Community from Effective Recycling 8
1.5 Urban Mining 13
1.6 Technologies for Metal Separations and Recovery from EOL Wastes 16
L6.1 Collection, Conditioning, and Pre-processing of Waste 16
1.6.2 Separation and Recovery Technologies 17
1.62.1 Integrated Smelter and Advanced Refining Technologies 17
1.62.2 Informal Recycling 18
1.7 Conclusions 19
References 21
2 Global Metal Reuse, and Formal and Informal Recycling from Electronic
and Other High-Tech Wastes 23
Ian D. Williams
2.1 Introduction 23
2.2 Metal Sources 24
2.3 E-waste 28
2.4 Responses to the E-waste Problem 29
2.5 Reuse of Metals from High-tech Sources 31
2.5.1 Reuse by Social Enterprises 33
2.5.2 Reuse in the Private Sector 35
2.5.3 Reuse Research 35
2.6 Recycling of Metals from High-tech Sources 36
2.6.1 Ferrous and Non-ferrous Metals 36
2.6.2 Speciality and Precious Metals 37
2.6.3 Formal Recycling 39
2.6.3.1 Collection and Sorting of Metals for Recycling 39
2.6.32 Role of the Third Sector 40
2.6.33 Technical Aspects of Formal Recycling 40
2.63.4 Metal Extraction 42
2.63.5 Economics of Formal Recycling 43
2.6.4 Informal Recycling 43
2.6.4.1 Collection and Sorting of Metals for Informal Recycling 44
2.6.4.2 Informal Sorting Methods 44
2.6.4.3 Legal Issues 45
2.6.4.4 Health, Safety and Environmental Issues 45
2.1 Conclusions 46
References 47
3 Global Management of Electronic Wastes: Challenges Facing Developing
and Economy-in-Transition Countries 52
Oladele Osibanjo, Innocent C. Nnorom, Gilbert U. Adie, Mary B. Ogundiran,
and Adebola A. Adeyi
3.1 Introduction 52
3.1.1 Electronic waste (E-waste): Definitions, Categories and Composition 52
3.1.2 Typology and Categories of E-waste 53
3.2 E-waste Composition 56
3.3 E-waste Generation 61
3.3.1 Estimated Global Quantities of E-waste Generated 61
3.4 Problems with E-waste 63
3.5 E-waste Management Challenges Facing Developing Countries 65
3.5.1 Introduction 65
3.5.2 Poor Feedstock Collection Strategies 67
3.5.3 Lack of State-of-the-Art Technologies to Recover
Resources from E-Waste 68
3.5.4 Lack of Specific E-Waste Regulations and Enforcement in
Developing Countries 68
3.6 Environmental and Health Impacts of E-Waste Management
in Developing Countries 71
3.6.1 Environmental Impacts of E-Waste 71
3.6.2 Health Impacts of E-Waste 71
3.7 Solutions for Present and Future Challenges 73
3.7.1 Optimizing and Promoting E-Waste as a Resource 73
3.7.2 Role of Product Design in Defining Product EoL Scenario 73
3.7.3 Recovering EoL Products 74
3.7.4 E-Waste as a Resource for Socioeconomic Development 75
3.7.5 Urban Mining 76
3.8 Conclusions 77
References 78
4 Dynamics of Metal Reuse and Recycling in Informal Sector
in Developing Countries 85
Mynepalli K. C. Sridhar and Taiwo B. Hammed
4.1 Introduction 85
4.2 Science of Metals 86
4.3 Technosphere, Demand and Mobility of Metals 89
4.4 Waste Dump sites and Treasures of Heavy Metals 92
4.4.1 African Countries 92
4.4.2 Latin American Countries 94
4.4.3 Asian Countries 94
4.4.4 Metals and Global Business 94
4.5 Scrap Metal and Consumer Markets 96
4.6 Export of Metal Scrap 99
4.7 E-waste Scavenging and End-of-Life Management 102
4.8 Scrap Metal Theft 105
4.9 Conclusions 106
References 106
5 Metal Sustainability from Global E-waste Management 109
Jinhui Li and Qingbin Song
5.1 Introduction 109
5.2 E-Waste Issues 109
5.3 E-Waste Management in China 112
5.3.1 Generation and Flows 112
5.3.2 Policies 113
5.3.3 Formal and Informal Sectors 115
5.3.3.1 Formal Sectors 115
5.3.3.2 Info rmal Secto rs 116
5.4 Recycling of Metals Found in E-waste 119
5.4.1 Base or Major Metals (Fe, Al, Cu, Pb, etc.) 119
5.4.2 Toxic Metals 120
5.4.2.1 Lead 120
5.4.2.2 Cadmium and Chromium(VI) 120
5.4.3 Precious Metals 123
5.4.4 Rare Earth Elements (REEs) 123
5.5 Challenges and Efforts in Metal Sustainability in China 124
5.5.1 Challenges 124
5.5.2 Efforts 124
5.6 Summary 127
5.7 Acknowledgment 130
References 131
6 E-waste Recycling in China: Status Quo in 2015 134
Martin Streicher-Porte, Xinwen Chi, and Jianxin Yang
6.1 Introduction 134
6.2 Formal E-waste Collection and Recycling System in China 135
6.2.1 The Policy Framework of E-waste Management 135
6.2.2 E-waste flow in China 137
6.2.3 The Mechanism and Practice of WEEE
Recycling in China 137
6.3 Informal E-waste Collection and Recycling 139
6.3.1 Informal Sector and E-waste Management 139
6.3.2 Informal E-waste Collection and Recycling in China 140
6.3.2.1 Casual Waste Workers and Recycling Jobs 141
63.2.2 Organization of Manual Sorting and Dismantling 143
6.3.3 Interactions between the Formal and Informal Sectors 145
6.4 Conclusions 146
References 147
7 Metallurgical Recovery of Metals from Waste Electrical and Electronic
Equipment (WEEE) in PRC 151
Xueyi Guo, Yongzhu Zhang, and Kaihua Xu
1.1 Introduction 151
7.2 Major Sources of E-Waste in China 152
7.3 Strategies and Regulations for WEEE Management
and Treatment 153
7.3.1 Strategies for WEEE Management 153
7.3.2 European Regulations 154
7.3.3 Regulations for WEEE Management in China 154
7.3.4 Implementation of Regulations Related to E-Waste 156
7.3.5 Collection System of WEEE Materials 157
7.3.6 WEEE Materials Processing Companies 158
7.3.7 International Cooperation 158
7.4 Recycling and Processing of WEEE 159
7.4.1 Operational Strategies 159
7.4.2 General Processing Technology 160
7.4.3 Disassembly 161
7.4.4 Upgrading 161
7.4.4.1 Comminuting 161
7.4.4.2 Separation 162
7.4.5 Metal Refining 163
7.4.5.1 Copper Smelting Route 164
7A.5.2 Lead Smelting Route 165
7.4.53 Industrial Practices for the Recovery of Metals
from E- Waste 166
7.5 Current Issues in WEEE Treatment in China 167
7.6 Conclusions 167
References 168
8 Metal Pollution and Metal Sustainability in China 169
Xiaoyun Jiang, Shengpei Su, and Jianfei Song
8.1 Introduction 169
8.2 Heavy Metal Pollution in China 170
8.2.1 Heavy Metal Pollution Status 170
8.2.1.1 Heavy Metal Pollution in Water 171
8.2.1.2 Heavy Metal Pollution of Soil 174
8.2.1.3 Heavy Metal Pollution of Atmosphere 175
8.2.2 Heavy Metal Pollution in China: Prevention and Control 177
8.2.2.1 Laws and Regulations for Heavy Metal
Pollution Prevention and Control 177
8.22.2 Policies for Heavy Metal Pollution Prevention and Control 181
8.3 Metal Sustainability in China 185
8.3.1 Metal Recycling in China 185
8.3.2 Metal Recycling from Wastewater, Solid Waste and Flue Gas 186
8.32.1 Metal Recycling from Wastewater 186
8.32.2 Metal Recycling from Solid Waste 187
8.32.3 Metal Recycling from Flue Gas 189
8.32.4 Metal Recycling from E-waste 191
8.4 Metal Sustainability in China: Future Prospects 192
References 193
9 Mercury Mining in China and its Environmental
and Health Impacts 200
Guangle Qiu, Ping Li, and Xinbin Feng
9.1 Introduction 200
9.2 Mercury Mines and Mining 201
9.2.1 Mercury Mines 201
9.2.2 Mercury Production 201
9.2.3 Mercury Usage 202
9.3 Mercury in the Environment 202
9.3.1 Air 203
9.3.1.1 Levels 203
9.3.12 Emission Sources 204
9.3.2 Mine-waste Tailings (Calcines) 204
9.3.3 Soil 205
9.3.3.1 Levels 205
9.3.32 Spatial Distribution 205
9.3.3.3 Bioavailability 208
9.3.4 Water 208
9.3.5 Biota 209
9.3.5.1 Fish 209
9.3.52 Rice 210
9.3.5.3 Other Crops 210
9.4 Human Exposure and Health Risk Assessment 211
9.4.1 Human Exposure 211
9.4.1.1 Hair 212
9.4.12 Blood 213
9.4.1.3 Urine 214
9.4.2 Health Risk Assessment 215
9.42.1 IHg Exposu re 215
9.4.22 MeHg Exposure 215
9.5 Summary 216
References 216
10 Effects of Non-Essential Metal Releases on the Environment
and Human Health 221
Peter G.C. Campbell and Jürgen Gailer
10.1 Introduction 221
10.2 Metal Biogeochemical Cycles 222
10.2.1 Natural and Anthropogenic Sources 222
10.2.2 Notions of Metal Speciation 223
10.2.3 Environmental Fate of Metals 224
10.3 Metal Environmental Toxicology 226
10.3.1 How Do Metals Interact with Aquatic
Freshwater Organisms? 226
10.3.2 The Biotic Ligand Model (Chemical Equilibrium Approach) 227
10.3.3 The Dynamic Multi-Pathway Bioaccumulation Model
(Chemical Kinetics Approach) 228
10.3.4 Metal Detoxification 229
10.4 Case Study: Cadmium 229
10.4.1 Bioaccumulation (BLM vs. DYM-BAM) 230
10.4.2 Subcellular Partitioning 231
10.4.3 Evidence for Cd-Induced Effects in Aquatic Organisms 232
10.5 Chronic Low-Level Exposure of Human Populations to
Non-Essential Metals 232
10.5.1 Historical Perspective 233
10.5.2 Assessment of Human Exposure to Non-Essential Metals 235
10.5.3 Bioavailability of Non-Essential Metal Species 237
10.5.3.1 Respiratory System 237
10.5.3.2 Gastrointestinal System 238
10.5.3.3 Skin 239
10.5.4 Metabolism of Non-Essential Metals 239
10.5.4.1 Blood Circulation 239
10.5.4.2 Organs 240
10.5.5 Linking Non-Essential Metal Exposure to the Etiology
of Human Diseases 241
10.5.6 Global Ecosystem Contamination by Arsenic, Cadmium,
Lead and Mercury as an Underestimated Threat to Human
and Ecosystem Health: A Summary 242
References 243
11 How Bacteria are Affected by Toxic Metal Release 253
Mathew L. Frankel, Sean C. Booth, and Raymond J. Turner
11.1 Introduction to Bacteria in the Environment 253
11.2 Bacterial Interactions with Metals 255
11.2.1 Essential Metals 255
11.2.2 Non-essential Metals 256
11.3 Bacterial Response to Toxic Metals 257
11.3.1 What Are the Toxicity Levels of Metals to Bacteria? 257
11.3.2 Resistance Mechanisms of Bacteria to Metals 258
I 1.4 How Are Metals Toxic to Bacteria? 261
11.4.1 Reactive Oxygen Species 261
11.4.LI Disruptive Reactions of ROS. 261
11.4.2 Thiol Chemistry 262
11.4.3 Replacement of Co-factor Metals in Metalloproteins 263
11.4.4 Mutagenic Effects 263
11.4.5 Other Mechanisms for Metal Toxicity 264
11.5 Conclusions 265
References 265
12 Application of Molecular Recognition Technology to Green Chemistry:
Analytical Determinations of Metals in Metallurgical,
Environmental, Waste, and Radiochemical Samples 271
Yoshiaki Furusho, Ismail M.M. Rahman, Hiroshi Hasegawa, and Neil E. hatt
12.1 Introduction 271
12.2 Technologies Used for Green Chemistry Trace Element Analysis 272
12.3 Elemental Analysis Instrumentation 273
12.4 Arsenic Speciation in Food Analysis 275
12.5 Metal Separation Resins and Their Application to Elemental Analyses 275
12.5.1 Ion Exchange Resins 277
12.5.2 Chelating Resins 278
12.5.3 Molecular Recognition Technology Resins 279
12.6 Green Chemistry Analytical Applications of Metal Separation Resins 279
12.6.1 Analysis of Trace Levels of Rare Earth Elements in
Rainwater in Suburban Tokyo, Japan 279
12.6.2 Analysis of Metal Pollutants in Aqueous Environmental Samples 279
12.6.3 Analysis of Trace Levels of Lead in High Matrix
Plating Solutions 280
12.6.4 Analysis of Trace Levels of Precious Metals in
Recycled Materials 282
12.6.5 Analysis of Radioactive Strontium and Other
Radionuclides using MRT Rad Disks 286
12.7 Conclusions 288
References 290
13 Ionic Liquids for Sustainable Production of Actinides and Lanthanides 295
Paula Berton, Steven P. Kelley, and Robin D. Rogers
13.1 Introduction 296
13.2 f-Element Chemistry in Ionic Liquids 297
13.3 Applications of Ionic Liquids in f-Element Isolation 298
13.3.1 Liquid-Liquid Extractions 298
13.3.2 Processing of Ore, Spent Fuel, and Recycling 304
13.3.2.1 Use of ILs for Dissolution of Metals and Metal Salts 304
13.3.2.2 Strategies for Isolating f-Elements from
Solid Resources 306
13.3.3 Uranium from Seawater: A Case Study 307
13.4 Summary 308
13.5 Acknowledgments 308
References 309
14 Selective Recovery of Platinum Group Metals and Rare Earth Metals
from Complex Matrices Using a Green Chemistry/Molecular Recognition
Technology Approach 317
Steven R. Izatt, James 5. McKenzie, Ronald L. Bruening, Reed M. Izatt,
Neil E. Izatt, Krzysztof E. Krakowiak
14.1 Introduction 317
14.2 Molecular Recognition Technology 319
14.3 Strengths of Molecular Recognition Technology in Metal
Separations 320
14.3.1 Significant Improvement in Process Conditions 320
14.3.2 Short Process Time 320
14.3.3 High Selectivity for Target Species 320
14.3.4 Availability of SuperLig® Products for a
Wide Range of Species 321
14.3.5 Significant Operating Advantages 321
14.3.6 Environmentally and Ecologically Friendly Processes 322
14.3.7 Cost Effectiveness 322
14.4 Applications of Molecular Recognition Technology to
Separations Involving Platinum Group Metals 322
14.5 Applications of Molecular Recognition Technology to Separations
Involving Rare Earth Elements 327
14.6 Comparison of Opex and Capex Costs for Molecular Recognition
Technology and Solvent Extraction in Separation and Recovery of
Rare Earth Metals 330
14.7 Conclusions 331
References 331
15 Refining and Recycling Technologies for Precious Metals 333
Tetsuya Ueday Satoshi Ichiishi, Akihiko Okuda, and Koichi Matsutani
15.1 Introduction 333
15.2 Precious Metals Supply and Demand 334
15.2.1 Supply 334
15.2. LI Platinum 334
15.2.1.2 Palladium 335
15.2.1.3 Gold 336
15.2.2 Demand 336
15.2.2.1 Platinum 336
15.2.2.2 Gold 337
15.2.3 Outlook for Supply and Demand 337
15.3 Autocatalysts (Pt, Pd, Rh) 337
15.3.1 Demand for Autocatalysts by Region 337
15.3.2 Recycling System for Autocatalysis 341
15.3.3 Extraction and Refining Technologies for
End-of-Life Autocatalysts 342
15.3.4 Outlook for Recycling 343
15.4 Electronic Components 344
15.4.1 Demand for Electronic Components 344
15.4.2 Recycling System for Electronic Components 345
15.4.3 Extraction and Refining Technologies for Electronic Waste 347
15.4.4 Outlook for Recycling 348
15.5 Catalysts for Fuel Cell Application 349
15.5.1 Platinum, Platinum/Cobalt Alloy /Carbon and Platinum
Ruthenium Alloy/Carbon Catalysts for Polymer Electrolyte
Membrane Fuel Cells 349
15.5.1.1 Fuel Cells 349
15.5.1.2 Highly Active Platinum and Platinum Alloy
Catalysts for Cathodes (Air Poles) 350
15.5.1.3 Highly Durable Platinum Catalysts and
Platinum Alloy Catalysts for Cathodes (Air Poles) 351
15.5.1.4 Platinum/Ruthenium Alloy Catalysts 352
15.5.2 Outlook for Recycling 354
15.6 Extraction and Refining Technologies for Precious Metals 355
15.6.1 Extraction Technologies 355
15.6.1.1 Dissolving Precious Metals 356
15.6.1.2 Chemistry Behind Precious Metal
Aqueous Solutions 356
15.6.1.3 Ion Exchange Resin and Activated Carbon 357
15.6.2 Refining Technologies 357
15.6.2.1 Precipitation Crystallization 357
15.6.2.2 Solvent Extraction 358
15.6.2.3 Molecular Recognition Technology (MRT) 359
15.6.2.4 Electrolytic Refining 359
15.7 Conclusions 359
References 360
16 The Precious Metals Industry: Global Challenges,
Responses, and Prospects 361
Michael B. Mooiman, Kathryn C. Sole, and Nicholas Dinham
16.1 Introduction: The Precious Metals Industry 361
16.1.1 Structure of the Industry 362
16.1.2 Precious Metal Demand and Prices 364
16.2 Current and Emerging Challenges 365
16.2.1 Increased Demand 365
16.2.2 Increasing and Volatile Prices 366
16.2.3 Decreasing Grades and Increasingly Complex Mineralogy 368
16.2.4 Increasing Production Costs 369
16.2.5 Deleterious Byproducts 370
16.2.6 Geopolitics, Public Perception, and Regulations 371
16.2.6.1 Government-Mining Company Interactions 371
16.2.6.2 Safety in Mining and Processing 373
16.2.6.3 Environmental Impacts 373
16.2.6.4 Fungibility of Precious Metals 374
16.2.7 Labor Relations 374
16.2.8 Artisanal and Illegal Mining 375
16.2.9 Sustainability and Sustainable Development 376
16.2.10 Water and Energy Use 379
16.2.11 Technology Cycles 380
16.3 Responding to the Challenges: Mitigating Approaches and
New Developments 380
16.3.1 Recycling of Precious Metals , 381
16.3.1.1 Recycling of High-Grade Materials 381
16.3.1.2 Recycling of Low-Grade Mate rials 382
16.3.1.3 Trends and Efficiencies in Precious Metals Recycling 383
16.3.2 Thrifting and Substitution 384
16.3.3 Mining and Recovery from Lower-Grade Materials 385
16.3.4 improved Mining, Recovery, and Separation Technologies 386
16.4 Concluding Remarks: A Long-Term View of the Precious Metals Industry 388
References 389
17 Metal Sustainability from a Manufacturing Perspective:
Initiatives at ASARCO LLC Amarillo Copper Refinery 397
Luis G. Navarro, Tracy Morris, Weldon Read, and Krishna Parameswaran
17.1 Introduction 397
17.2 General Overview of Sustainability from the Copper Industry Perspective 398
17.3 A Brief History of ASARCO LLC 399
17.3.1 Asarco’s Footprint in Amarillo, Texas 399
17.4 How Refined Copper Is Produced 400
17.5 Introduction to Physical Chemistry of Copper Electrorefining 402
17.6 Electrolyte Purification 404
17.6.1 Conventional Methods for Electrolyte Purification 404
17.6.2 Molecular Recognition Technology (MRT) 406
17.6.2.1 Use of MRT for Bismuth Removal at A CR 406
17.7 Recovery of Metals by Precipitation from Acidic Streams 409
17.7.1 Nickel Carbonate Recovery 410
17.7.1.1 Nickel Carbonate precipitation 410
17.7.2 Tellurium Recovery 413
17.7.2.1 Atmospheric Oxidizing Slimes Leaching Process 415
17.7.2.2 Pressurized Leaching Process of Anodic
Copper Slimes 416
17.7.2.3 Detellurization Process 417
17.8 Other S ustainable Development Efforts at ACR 419
17.8.1 Implementation of Quality Management System 421
17.9 Conclusions 421
References 422
18 Sustainability Initiatives at ASARCO LLC: A Mining
Company Perspective 424
Dr Krishna Parameswaran
18.1 Introduction 424
18.2 What is Sustainable Mining? 425
183 Exploration 427
183.1 Montana, USA 427
18.3.1.1 Troy Mine All
18.3.1.2 Rock Creek 429
183.2 Camp Caiman Gold Exploration Project, French Guiana,
South America 431
18.4 Innovative Reclamation Methods 436
18.4.1 Use of Biosolids 436
18.4.2 Use of Cattle 439
18.5 Reclamation of San Xavier Tailings Storage Facilities
and Waste Rock Deposition Areas 441
18.6 Fostering Renewable Energy Projects on Disturbed Lands 442
18.7 Utilization of Mining Wastes 448
18.8 Conclusions 450
References 451
19 Recycling and Dissipation of Metals: Distribution of Elements in
the Metal, Slag, and Gas Phases During Metallurgical Processing 453
Kenichi Nakajima, Osamu Takeda, Takahiro Miki, Kazuyo
Matsubae, and Tetsuya Nagasaka
19.1 Introduction: Background, Motivation, and Objectives 453
19.2 Method: Chemical Thermodynamic Analysis of the Distribution
of Elements in the Smelting Process 454
193 Element Distribution Tendencies in Recycling Metals 456
19.3.1 Copper Smelting 456
193.2 Lead and Zinc Smelting 457
1933 Aluminum Remelting 457
19.4 Metallurgical Knowledge for Recycling: Element Radar
Chart for Metallurgical Processing 463
References 465
20 Economic Perspectives on Sustainability, Mineral Development,
and Metal Life Cycles 467
Roderick G. Eggert
20.1 Introduction 467
20.2 The Many Faces of Sustainability 468
203 Economic Concepts 469
203.1 Economic Efficiency and Equity 469
20.3.2 Discounting 470
2033 Externalities 470
203.4 Capital 471
20.4 Implications for Mine Development 471
20.4.1 Sustainability of Production 471
20.4.2 Sustainability of Wellbeing Originating from Mining 472
20.5 Implications for Regional and National Mineral Development 473
20.5.1 Sustainability Funds 473
20.5.2 Green Accounting 474
20.6 Implications for Metal Life Cycles, Material Efficiency,
and the Circulai- Economy 476
20.6.1 Nonrenewability of Mineral Resources and Metals 477
20.6.2 Environmental Damages and Wastes 480
20.7 What to Do? 481
Acknowledgments 482
References 483
21 Closing the Loop: Minerals Industry Issues 485
William J. Rankin and Nawshad Haque
21.1 Introduction 485
21.2 The Waste Hierarchy 486
21.3 Reducing and Eliminating Wastes 487
21.3.1 Cleaner Production 490
21.3.2 Wastes as Co-products 490
21.3.3 Process Re-engineering 491
21.3.4 Closing the Loop 492
21.3.5 Stewardship 494
21.4 Tools for Closing the Loop 497
21.4.1 A Case Study: Steelmaking Using Biomass 497
21.4.1.1 Economic Benefits 499
21.4.1.2 Environmental Benefits 501
21.4.1.3 Summary 501
21.5 Closing the Loop: Barriers and Drivers 503
References 505
Index
508
|
any_adam_object | 1 |
author2 | Izatt, Reed M. 1926- |
author2_role | edt |
author2_variant | r m i rm rmi |
author_GND | (DE-588)1113688882 |
author_facet | Izatt, Reed M. 1926- |
building | Verbundindex |
bvnumber | BV043822829 |
classification_rvk | RB 10693 UQ 7000 |
contents | Includes bibliographical references and index |
ctrlnum | (OCoLC)959549543 (DE-599)BVBBV043822829 |
dewey-full | 669.042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 669 - Metallurgy |
dewey-raw | 669.042 |
dewey-search | 669.042 |
dewey-sort | 3669.042 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Physik Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02186nam a2200529 c 4500</leader><controlfield tag="001">BV043822829</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170406 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161012s2016 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119009108</subfield><subfield code="c">(cloth)</subfield><subfield code="9">978-1-119-00910-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)959549543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043822829</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">669.042</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10693</subfield><subfield code="0">(DE-625)142220:12825</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 7000</subfield><subfield code="0">(DE-625)146565:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal sustainability</subfield><subfield code="b">global challenges, consequences, and prospects</subfield><subfield code="c">edited by Reed M. Izatt, IBC Advanced Technologies, Inc., American Fork, Utah, and Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, West Sussex</subfield><subfield code="b">John Wiley & Sons, Ltd.</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 527 Seiten</subfield><subfield code="b">Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals / Fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonferrous metals / Metallurgy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals / Recycling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metallurgy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metals / Fatigue</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metals / Recycling</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonferrous metals / Metallurgy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Metallurgy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metallwirtschaft</subfield><subfield code="0">(DE-588)4191462-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Metallwirtschaft</subfield><subfield code="0">(DE-588)4191462-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Izatt, Reed M.</subfield><subfield code="d">1926-</subfield><subfield code="0">(DE-588)1113688882</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029233789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029233789</subfield></datafield></record></collection> |
id | DE-604.BV043822829 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:36:01Z |
institution | BVB |
isbn | 9781119009108 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029233789 |
oclc_num | 959549543 |
open_access_boolean | |
owner | DE-384 DE-703 |
owner_facet | DE-384 DE-703 |
physical | XXII, 527 Seiten Diagramme, Karten |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | John Wiley & Sons, Ltd. |
record_format | marc |
spelling | Metal sustainability global challenges, consequences, and prospects edited by Reed M. Izatt, IBC Advanced Technologies, Inc., American Fork, Utah, and Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah Chichester, West Sussex John Wiley & Sons, Ltd. 2016 XXII, 527 Seiten Diagramme, Karten txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Metals Metals / Fatigue Metallurgy Nonferrous metals / Metallurgy Metals / Recycling Fracture mechanics Fracture mechanics fast Metallurgy fast Metals fast Metals / Fatigue fast Metals / Recycling fast Nonferrous metals / Metallurgy fast TECHNOLOGY & ENGINEERING / Metallurgy bisacsh Metallwirtschaft (DE-588)4191462-4 gnd rswk-swf Nachhaltigkeit (DE-588)4326464-5 gnd rswk-swf Metallwirtschaft (DE-588)4191462-4 s Nachhaltigkeit (DE-588)4326464-5 s DE-604 Izatt, Reed M. 1926- (DE-588)1113688882 edt Digitalisierung UB Augsburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029233789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Metal sustainability global challenges, consequences, and prospects Includes bibliographical references and index Metals Metals / Fatigue Metallurgy Nonferrous metals / Metallurgy Metals / Recycling Fracture mechanics Fracture mechanics fast Metallurgy fast Metals fast Metals / Fatigue fast Metals / Recycling fast Nonferrous metals / Metallurgy fast TECHNOLOGY & ENGINEERING / Metallurgy bisacsh Metallwirtschaft (DE-588)4191462-4 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
subject_GND | (DE-588)4191462-4 (DE-588)4326464-5 |
title | Metal sustainability global challenges, consequences, and prospects |
title_auth | Metal sustainability global challenges, consequences, and prospects |
title_exact_search | Metal sustainability global challenges, consequences, and prospects |
title_full | Metal sustainability global challenges, consequences, and prospects edited by Reed M. Izatt, IBC Advanced Technologies, Inc., American Fork, Utah, and Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah |
title_fullStr | Metal sustainability global challenges, consequences, and prospects edited by Reed M. Izatt, IBC Advanced Technologies, Inc., American Fork, Utah, and Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah |
title_full_unstemmed | Metal sustainability global challenges, consequences, and prospects edited by Reed M. Izatt, IBC Advanced Technologies, Inc., American Fork, Utah, and Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah |
title_short | Metal sustainability |
title_sort | metal sustainability global challenges consequences and prospects |
title_sub | global challenges, consequences, and prospects |
topic | Metals Metals / Fatigue Metallurgy Nonferrous metals / Metallurgy Metals / Recycling Fracture mechanics Fracture mechanics fast Metallurgy fast Metals fast Metals / Fatigue fast Metals / Recycling fast Nonferrous metals / Metallurgy fast TECHNOLOGY & ENGINEERING / Metallurgy bisacsh Metallwirtschaft (DE-588)4191462-4 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
topic_facet | Metals Metals / Fatigue Metallurgy Nonferrous metals / Metallurgy Metals / Recycling Fracture mechanics TECHNOLOGY & ENGINEERING / Metallurgy Metallwirtschaft Nachhaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029233789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT izattreedm metalsustainabilityglobalchallengesconsequencesandprospects |