Fluid dynamics: theory, computation, and numerical simulation
"Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implement...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
[2017]
|
Ausgabe: | Third edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET. |
Beschreibung: | xix, 901 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9781489979902 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043797055 | ||
003 | DE-604 | ||
005 | 20180628 | ||
007 | t | ||
008 | 160927s2017 gw a||| |||| 00||| eng d | ||
020 | |a 9781489979902 |c Festeinband |9 978-1-4899-7990-2 | ||
035 | |a (OCoLC)961805661 | ||
035 | |a (DE-599)BVBBV043797055 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-11 |a DE-29T |a DE-634 |a DE-703 | ||
050 | 0 | |a QA911 | |
082 | 0 | |a 620.106 |2 22 | |
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
084 | |a UF 4600 |0 (DE-625)145590: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Pozrikidis, Constantine |d 1958- |e Verfasser |0 (DE-588)13868796X |4 aut | |
245 | 1 | 0 | |a Fluid dynamics |b theory, computation, and numerical simulation |c C. Pozrikidis |
250 | |a Third edition | ||
264 | 1 | |a New York, NY |b Springer |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xix, 901 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a "Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET. | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Fluid dynamics | |
650 | 4 | |a Fluid dynamics |x Data processing | |
650 | 4 | |a Fluid dynamics |x Mathematical models | |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1007/978-1-4899-7991-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4899-7991-9 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029208481&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029208481 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176641394475008 |
---|---|
adam_text | Titel: Fluid dynamics
Autor: Pozrikidis, Constantine
Jahr: 2017
Contents
Preface xvü
Notation xix
1 Introduction to kinematics l
1.1 Fluids and solids................................ 1
1.2 Fluid parcels and flow kinematics ...................... 2
1.3 Coordinates, velocity, and acceleration.................... 4
1.3.1 Cylindrical polar coordinates..................... 7
1.3.2 Spherical polar coordinates...................... 10
1.3.3 Plane polar coordinates........................ 13
1.4 Fluid velocity.................................. 16
1.4.1 Continuum approximation...................... 17
1.4.2 Steady flow .............................. 17
1.4.3 Two-dimensional flow......................... 18
1.4.4 Swirling and axisymmetric flow................... 18
1.4.5 Velocity vector field, streamlines and stagnation points...... 18
1.5 Point particles and their trajectories..................... 19
1.5.1 Path lines............................... 20
1.5.2 Ordinary differential equations (ODEs)............... 21
1.5.3 Explicit Euler method ........................ 26
1.5.4 Modified Euler method........................ 28
1.5.5 Description in polar coordinates................... 32
1.5.6 Streaklines............................... 33
1.6 Material surfaces and elementary motions.................. 34
1.6.1 Fluid parcel rotation......................... 34
1.6.2 Fluid parcel deformation....................... 36
1.6.3 Fluid parcel expansion........................ 37
1.6.4 Superposition of rotation, deformation, and expansion ...... 38
1.6.5 Rotated coordinates.......................... 38
1.6.6 Fundamental decomposition of a two-dimensional flow ...... 41
vi Fluid Dynamics: Theory, Computation, and Numerical Simulation
1.7 Numerical interpolation............................ 46
1.7.1 Interpolation in one dimension.................... 47
1.7.2 Interpolation in two dimensions................... 50
1.7.3 Interpolation of the velocity in a two-dimensional flow ...... 53
1.7.4 Streamlines by interpolation..................... 57
2 More on kinematics 63
2.1 Fundamental modes of fluid parcel motion.................. 63
2.1.1 Function linearization......................... 64
2.1.2 Velocity gradient tensor........................ 67
2.1.3 Relative motion of point particles.................. 69
2.1.4 Fundamental motions in two-dimensional flow........... 69
2.1.5 Fundamental motions in three-dimensional flow.......... 71
2.1.6 Gradient in polar coordinates .................... 72
2.2 Fluid parcel expansion............................. 75
2.3 Fluid parcel rotation and vorticity...................... 76
2.3.1 Curl and vorticity........................... 78
2.3.2 Two-dimensional flow......................... 79
2.3.3 Axisymmetric flow .......................... 80
2.4 Fluid parcel deformation ........................... 81
2.5 Numerical differentiation........................... 84
2.5.1 Numerical differentiation in one dimension............. 84
2.5.2 Numerical differentiation in two dimensions ............ 86
2.5.3 Velocity gradient and related functions............... 88
2.6 Flow rates ................................... 95
2.6.1 Axeal flow rate and flux........................ 96
2.6.2 Areal flow rate across a line..................... 97
2.6.3 Analytical integration......................... 98
2.6.4 Numerical integration......................... 99
2.6.5 The Gauss divergence theorem in two dimensions......... 101
2.6.6 Flow rate in a three-dimensional flow................ 102
2.6.7 Gauss divergence theorem in three dimensions........... 102
2.6.8 Axisymmetric flow .......................... 103
2.7 Mass conservation and the continuity equation............... 105
2.7.1 Mass flux and mass flow rate..................... 105
2.7.2 Mass flow rate across a closed line.................. 105
2.7.3 The continuity equation ....................... 106
2.7.4 Three-dimensional flow........................ 107
2.7.5 Control volume and integral mass balance............. 109
2.7.6 Rigid-body translation........................ 109
2.7.7 Evolution equation for the density.................. 110
2.7.8 Continuity equation for axisymmetric flow............. 112
2.8 Properties of point particles.......................... 114
2.8.1 The material derivative........................ 114
Contents vii
2.8.2 The continuity equation ....................... 116
2.8.3 Point particle acceleration...................... 116
2.9 Incompressible fluids and stream functions ................. 120
2.9.1 Kinematic consequence of incompressibility............. 121
2.9.2 Mathematical consequence of incompressibility........... 121
2.9.3 Stream function for two-dimensional flow.............. 122
2.9.4 Stream function for axisymmetric flow ............... 124
2.10 Kinematic conditions at boundaries..................... 126
2.10.1 The no-penetration boundary condition............... 127
3 Flow computation based on kinematics 131
3.1 Flow classification based on kinematics................... 131
3.2 Irrotational flow and the velocity potential ................. 133
3.2.1 Two-dimensional flow......................... 134
3.2.2 Incompressible fluids and the harmonic potential ......... 135
3.2.3 Three-dimensional flow........................ 137
3.2.4 Boundary conditions......................... 137
3.2.5 Cylindrical polar coordinates..................... 138
3.2.6 Spherical polar coordinates...................... 138
3.2.7 Plane polar coordinates........................ 139
3.3 Finite-difference methods........................... 140
3.3.1 Boundary conditions......................... 140
3.3.2 Finite-difference grid......................... 142
3.3.3 Finite-difference discretization.................... 143
3.3.4 Compilation of a linear system.................... 145
3.4 Linear solvers.................................. 154
3.4.1 Gauss elimination........................... 155
3.4.2 A menagerie of other methods.................... 156
3.5 Two-dimensional point sources and point-source dipoles.......... 157
3.5.1 Function superposition and fundamental solutions......... 157
3.5.2 Two-dimensional point source.................... 158
3.5.3 Two-dimensional point-source dipole ................ 160
3.5.4 Flow past a circular cylinder..................... 165
3.5.5 Sources and dipoles in the presence of boundaries......... 166
3.6 Three-dimensional point sources and point-source dipoles......... 168
3.6.1 Three-dimensional point source................... 168
3.6.2 Three-dimensional point-source dipole ............... 169
3.6.3 Streaming flow past a sphere..................... 170
3.6.4 Sources and dipoles in the presence of boundaries......... 171
3.7 Point vortices and line vortices........................ 172
3.7.1 The potential of irrotational circulatory flow............ 173
3.7.2 Flow past a circular cylinder..................... 174
3.7.3 Circulation............................... 176
3.7.4 Line vortices in three-dimensional flow............... 177
viii Fluid Dynamics: Theory, Computation, and Numerical Simulation
4 Forces and stresses 181
4.1 Forces acting in a fluid ............................ 181
4.1.1 Body force............................... 181
4.1.2 Surface force.............................. 182
4.2 Traction and the stress tensor ........................ 183
4.2.1 Traction on either side of a fluid surface .............. 187
4.2.2 Traction on a boundary........................ 188
4.2.3 Symmetry of the stress tensor.................... 188
4.3 Traction jump across a fluid interface.................... 189
4.3.1 Interfacial tension........................... 189
4.3.2 Force balance at a two-dimensional interface............ 190
4.4 Force balance at a three-dimensional interface ............... 197
4.4.1 Mean curvature............................ 199
4.4.2 Directional curvatures......................... 200
4.4.3 Axisymmetric interfaces ....................... 201
4.5 Stresses in a fluid at rest ........................... 204
4.5.1 Pressure from molecular motions .................. 205
4.5.2 Jump in pressure across an interface in hydrostatics........ 206
4.6 Constitutive equations............................. 207
4.6.1 Simple fluids.............................. 209
4.6.2 Incompressible Newtonian fluids................... 210
4.6.3 Viscosity................................ 211
4.6.4 Viscosity of a gas........................... 211
4.6.5 Ideal fluids............................... 214
4.6.6 Significance of the pressure in an incompressible fluid....... 214
4.7 Pressure in compressible fluids........................ 215
4.8 Simple non-Newtonian fluids......................... 219
4.8.1 Unidirectional shear flow....................... 219
4.8.2 Channel flow.............................. 220
4.8.3 Yield-stress fluids........................... 221
4.9 Stresses in polar coordinates......................... 222
4.9.1 Cylindrical polar coordinates..................... 222
4.9.2 Spherical polar coordinates...................... 225
4.9.3 Plane polar coordinates........................ 226
4.10 Boundary conditions for the tangential velocity............... 228
4.10.1 No-slip boundary condition...................... 228
4.10.2 Slip boundary condition ....................... 229
4.11 Wall stresses in Newtonian fluids....................... 229
4.12 Interfacial surfactant transport........................ 231
4.12.1 Two-dimensional interfaces...................... 232
4.12.2 Axisymmetric interfaces ....................... 236
4.12.3 Three-dimensional interfaces..................... 238
Contents ix
5 Hydrostatics 241
5.1 Equilibrium of pressure and body forces................... 241
5.1.1 Equilibrium of an infinitesimal parcel................ 243
5.1.2 Gases in hydrostatics......................... 246
5.1.3 Liquids in hydrostatics........................ 247
5.2 Force exerted on an immersed surface.................... 250
5.2.1 A sphere floating on a flat interface................. 250
5.2.2 Newton s method........................... 253
5.3 Archimedes principle............................. 256
5.3.1 Net force on a submerged body................... 258
5.3.2 Moments................................ 258
5.4 Interfacial shapes................................ 260
5.4.1 Curved interfaces........................... 261
5.4.2 The Laplace-Young equation for a two-dimensional interface . . . 262
5.4.3 Three-dimensional and axisymmetric interfaces .......... 263
5.5 A semi-infinite interface attached to an inclined plate........... 264
5.5.1 Numerical method........................... 266
5.5.2 A floating cylinder .......................... 270
5.6 A meniscus between two parallel plates................... 273
5.7 A two-dimensional drop on a horizontal plane................ 282
5.8 A two-dimensional drop on an inclined plane................ 292
5.8.1 First contact angle specified..................... 295
5.8.2 Specified contact points........................ 302
5.9 Axisymmetric meniscus inside a tube .................... 310
5.10 Axisymmetric drop on a horizontal plane.................. 320
5.11 A sphere straddling an interface....................... 334
5.12 A three-dimensional meniscus......................... 349
5.12.1 Elliptic coordinates.......................... 350
5.12.2 Finite-difference method....................... 352
5.12.3 Capillary force and torque...................... 357
6 Equation of motion and vorticity transport 361
6.1 Newton s second law of motion for a fluid parcel.............. 361
6.1.1 Rate of change of linear momentum................. 362
6.1.2 Equation of parcel motion...................... 363
6.1.3 Two-dimensional flow......................... 363
6.2 Integral momentum balance.......................... 366
6.2.1 Control volume and integral momentum balance.......... 369
6.2.2 Flow through a sudden enlargement................. 371
6.2.3 Isentropic flow through a conduit.................. 372
6.3 Cauchy s equation of motion......................... 374
6.3.1 Hydrodynamic volume force..................... 374
Fluid Dynamics: Theory, Computation, and Numerical Simulation
6.3.2 Hydrodynamic force on an infinitesimal parcel........... 375
6.3.3 The equation of motion........................ 376
6.3.4 Evolution equations.......................... 377
6.3.5 Cylindrical polar coordinates..................... 377
6.3.6 Spherical polar coordinates...................... 379
6.3.7 Plane polar coordinates........................ 379
6.3.8 Vortex force.............................. 380
6.3.9 Summary of governing equation................... 380
6.3.10 Accelerating frame of reference.................... 381
6.4 Euler and Bernoulli equations......................... 381
6.4.1 Boundary conditions......................... 382
6.4.2 Irrotational flow............................ 383
6.4.3 Torricelli s law............................. 386
6.4.4 Decay of perturbations in a wind or water tunnel......... 389
6.4.5 Flow of a horizontal stream over a hump.............. 390
6.4.6 Steady rotational flow......................... 391
6.4.7 Flow with uniform vorticity ..................... 392
6.5 The Navier-Stokes equation.......................... 394
6.5.1 Pressure and viscous forces...................... 395
6.5.2 A radially expanding or contracting bubble............. 395
6.5.3 Boundary conditions......................... 397
6.5.4 Polar coordinates........................... 398
6.6 Vorticity transport............................... 400
6.6.1 Two-dimensional flow......................... 400
6.6.2 Axisymmetric flow .......................... 403
6.6.3 Three-dimensional flow........................ 404
6.7 Dynamic similitude and the Reynolds number ............... 407
6.7.1 Dimensional analysis......................... 410
6.8 Structure of a flow as a function of the Reynolds number......... 413
6.8.1 Stokes flow............................... 414
6.8.2 Flows at high Reynolds numbers................... 415
6.8.3 Laminar and turbulent flow ..................... 415
6.9 Dimensionless numbers in fluid dynamics.................. 415
Channel, tube, and film flow 419
7.1 Steady flow in a two-dimensional channel.................. 419
7.1.1 Alternative coordinates........................ 423
7.1.2 Two-layer flow............................. 426
7.1.3 Multi-layer flow............................ 428
7.1.4 Power-law fluids............................ 435
7.2 Steady film flow down an inclined plane................... 440
7.2.1 Multi-film flow............................. 441
7.2.2 Power-law fluids............................ 446
7.3 Steady flow through a circular tube..................... 447
Contents xi
7.3.1 Multi-layer tube flow......................... 453
7.3.2 Flow due to a translating sector................... 458
7.4 Steady flow through an annular tube..................... 461
7.4.1 Small gaps............................... 462
7.4.2 Multi-layer annular flow ....................... 464
7.5 Steady flow through channels and tubes................... 469
7.5.1 Elliptical tube............................. 470
7.5.2 Equilateral triangular tube...................... 472
7.5.3 Rectangular tube........................... 475
7.5.4 Rectangular duct........................... 478
7.5.5 Semi-infinite rectangular channel .................. 480
7.6 Steady swirling flows.............................. 483
7.6.1 Annular flow.............................. 483
7.6.2 Multi-layer swirling flow....................... 486
7.7 Transient channel flows............................ 491
7.7.1 Couette flow.............................. 491
7.7.2 Impulsive motion of a plate in a semi-infinite fluid......... 494
7.7.3 Pressure- and gravity-driven flow .................. 497
7.8 Oscillatory channel flows ........................... 501
7.8.1 Oscillatory Couette flow....................... 501
7.8.2 Rayleigh s oscillating plate...................... 504
7.8.3 Pulsating pressure-driven flow.................... 506
7.9 Transient and oscillatory flow in a circular tube............... 509
7.9.1 Transient Poiseuille flow....................... 509
7.9.2 Pulsating pressure-driven flow.................... 514
7.9.3 Transient circular Couette flow.................... 517
7.9.4 Orthogonality of Bessel functions.................. 518
8 Finite-difference methods 521
8.1 Choice of governing equations......................... 521
8.2 Unidirectional flow; velocity/pressure formulation ............. 522
8.2.1 Governing equations ......................... 523
8.2.2 Explicit finite-difference method................... 523
8.2.3 Implicit finite-difference method................... 526
8.2.4 Thomas algorithm........................... 530
8.2.5 Steady state.............................. 532
8.2.6 Two-layer flow............................. 533
8.3 Unidirectional flow; velocity /vorticity formulation ............. 540
8.3.1 Boundary conditions for the vorticity................ 540
8.3.2 Alternative set of equations ..................... 541
8.3.3 Comparison with the velocity/pressure formulation........ 543
8.4 Unidirectional flow; stream function/vorticity formulation......... 543
8.4.1 Boundary conditions for the vorticity................ 544
xü Fluid Dynamics: Theory, Computation, and Numerical Simulation
8.4.2 A semi-implicit method........................ 545
8.5 Two-dimensional flow; stream function/vorticity formulation....... 547
8.5.1 Flow in a cavity............................ 547
8.5.2 Finite-difference grid......................... 549
8.5.3 Unsteady flow............................. 549
8.5.4 Steady flow .............................. 551
8.5.5 Summary................................ 557
8.6 Velocity/pressure formulation......................... 559
8.6.1 Alternative system of governing equations............. 561
8.6.2 Pressure boundary conditions.................... 561
8.6.3 Compatibility condition for the pressure.............. 562
8.7 Operator splitting and solenoidal projection................. 563
8.7.1 Convection-diffusion step....................... 564
8.7.2 Projection step ............................ 566
8.7.3 Boundary conditions for the intermediate velocity......... 567
8.7.4 Flow in a cavity............................ 568
8.7.5 Computation of the pressure..................... 580
8.8 Staggered grids................................. 582
9 Low-Reynolds-number flow 591
9.1 Flow in a narrow channel........................... 591
9.1.1 Governing equations ......................... 592
9.1.2 Scaling................................. 593
9.1.3 Equations of lubrication flow..................... 594
9.1.4 Lubrication flow in a slider bearing................. 594
9.1.5 Flow in a wavy channel........................ 597
9.1.6 Dynamic lifting............................ 600
9.2 Film flow on a horizontal or inclined wall.................. 610
9.2.1 Thin-film flow............................. 610
9.2.2 Numerical methods.......................... 613
9.3 Multi-film flow on a horizontal or inclined wall............... 615
9.3.1 Evolution equations.......................... 619
9.3.2 Numerical methods.......................... 620
9.4 Two-layer channel flow ............................ 627
9.5 Flow due to the motion of a sphere...................... 639
9.5.1 Formulation in terms of the stream function............ 640
9.5.2 Traction, force, and the Archimedes-Stokes law.......... 644
9.6 Point forces and point sources in Stokes flow................ 646
9.6.1 The Oseen tensor and the point force................ 647
9.6.2 Flow representation in terms of singularities............ 649
9.6.3 A sphere moving inside a circular tube............... 649
9.6.4 Boundary integral representation .................. 652
9.7 Two-dimensional Stokes flow......................... 654
Contents xiii
9.7.1 Flow due to the motion of a cylinder................ 654
9.7.2 Rotation of a circular cylinder.................... 657
9.7.3 Simple shear flow past a circular cylinder.............. 658
9.7.4 The Oseen tensor and the point force................ 658
9.8 Local solutions................................. 660
9.8.1 Solution by separation of variables.................. 660
9.8.2 Stagnation-point flow on a plane wall................ 661
9.8.3 Flow inside a corner.......................... 663
10 High-Reynolds-number flow 669
10.1 Changes in the structure of a flow
with increasing Reynolds number....................... 669
10.1.1 Flow past a cylinder ......................... 670
10.2 Prandtl boundary-layer analysis....................... 673
10.2.1 Simplifications............................. 673
10.2.2 Boundary-layer equations....................... 676
10.2.3 Surface curvilinear coordinates.................... 677
10.2.4 Parabolization............................. 677
10.2.5 Flow separation............................ 677
10.3 Blasius boundary layer on a semi-infinite plate............... 678
10.3.1 Self-similarity and the Blasius equation............... 679
10.3.2 Numerical solution .......................... 681
10.3.3 Wall shear stress and drag force................... 684
10.3.4 Vorticity transport .......................... 685
10.4 Displacement and momentum thickness................... 686
10.4.1 Von Kärmän s approximate method................. 689
10.5 Boundary layers in accelerating or decelerating flow............ 691
10.5.1 Self-similarity............................. 692
10.5.2 Numerical solution .......................... 693
10.6 Momentum integral method.......................... 694
10.6.1 The von Kärmän-Pohlhausen method................ 696
10.6.2 Pohlhausen polynomials ....................... 696
10.6.3 Numerical solution .......................... 699
10.6.4 Boundary layer around a curved body................ 701
10.7 Instability of shear flows............................ 705
10.7.1 Stability analysis of shear flow.................... 706
10.7.2 Normal-mode analysis......................... 707
10.8 Finite-difference solution of the Rayleigh equation............. 710
10.8.1 Finite-difference equations...................... 710
10.8.2 A generalized eigenvalue problem.................. 712
10.8.3 Determinant of a tridiagonal matrix................. 713
10.8.4 Numerical implementation...................... 714
10.9 Finite-difference solution of the Orr-Sommerfeld equation......... 722
xiv Fluid Dynamics: Theory, Computation, and Numerical Simulation
10.10 Turbulent flow................................. 731
10.10.1 Transition to turbulence....................... 733
10.10.2 Lagrangian turbulence........................ 734
10.10.3 Features of turbulent motion..................... 735
10.10.4 Decomposition into mean and fluctuating components....... 736
10.10.5 Inviscid scales............................. 738
10.10.6 Viscous scales............................. 739
10.10.7 Relation between inviscid and viscous scales............ 740
10.11 Spectrum of a turbulent flow......................... 741
10.12 Analysis and modeling of turbulent flow................... 745
10.12.1 Reynolds stresses........................... 745
10.12.2 Prandtl s mixing length........................ 747
10.12.3 Logarithmic law for wall-bounded shear flow............ 749
10.12.4 Correlations.............................. 750
11 Vortex motion 753
11.1 Vorticity and circulation in two-dimensional flow.............. 753
11.2 Point vortices.................................. 755
11.2.1 Dirac s delta function in a plane................... 756
11.2.2 Evolution of the point vortex strength ............... 758
11.2.3 Velocity of a point vortex....................... 758
11.2.4 Motion of a collection of point vortices............... 758
11.2.5 Effect of boundaries.......................... 759
11.2.6 A periodic array of point vortices.................. 761
11.2.7 A point vortex between two parallel walls.............. 765
11.2.8 A point vortex in a semi-infinite strip................ 766
11.3 Two-dimensional flow with distributed vorticity .............. 767
11.3.1 Vortex patches with uniform vorticity................ 769
11.3.2 Contour dynamics........................... 772
11.3.3 Gauss integration quadrature .................... 774
11.3.4 Representation with circular arcs .................. 775
11.4 Vorticity and circulation in three-dimensional flow............. 780
11.4.1 Preservation of circulation...................... 781
11.4.2 Flow induced by vorticity....................... 783
11.5 Axisymmetric flow induced by vorticity................... 784
11.5.1 Biot-Savart integral for axisymmetric flow............. 786
11.5.2 Line vortex ring............................ 789
11.5.3 Vortex ring with finite core...................... 791
11.5.4 Motion of a collection of vortex rings................ 795
11.5.5 Vortex patch in axisymmetric flow.................. 796
11.6 Three-dimensional vortex motion....................... 798
11.6.1 Vortex particles............................ 799
11.6.2 Line vortices and the local-induction approximation (LIA) .... 799
Contents xv
12 Aerodynamics 803
12.1 General features of flow past an aircraft................... 803
12.2 Airfoils and the Kutta-Joukowski condition................. 805
12.2.1 The Kutta-Joukowski theorem.................... 810
12.2.2 The Kutta-Joukowski condition................... 811
12.3 Vortex panels.................................. 812
12.3.1 From point vortices to vortex panels ................ 813
12.3.2 Vortex panels with uniform strength ................ 814
12.3.3 Vortex panel with linear strength density.............. 816
12.4 Vortex panel method ............................. 819
12.4.1 Velocity in terms of the panel strength............... 822
12.4.2 Point collocation............................ 823
12.4.3 Circulation and pressure coefficient................. 824
12.4.4 Lift................................... 825
12.4.5 Vortex panel code........................... 827
12.5 Vortex sheet representation.......................... 833
12.5.1 Thin airfoil theory........................... 834
12.6 Point-source-dipole panels........................... 842
12.6.1 Source-dipole panel method..................... 844
12.6.2 Source-dipole representation..................... 845
12.6.3 Solution of the interior problem................... 846
12.7 Point-source panels and Green s third identity............... 847
12.7.1 Source panels with constant density................. 848
12.7.2 Green s third identity......................... 849
A FDLIB Software Library 853
B References 864
C Matlab Primer 866
C.l Launching MATLAB.............................. 866
C.2 MATLAB programming............................ 867
C.3 MATLAB commands.............................. 869
C.4 MATLAB examples............................... 873
C.5 MATLAB functions............................... 876
C.6 User-defined functions............................. 876
C.7 MATLAB graphics............................... 881
Index 889
|
any_adam_object | 1 |
author | Pozrikidis, Constantine 1958- |
author_GND | (DE-588)13868796X |
author_facet | Pozrikidis, Constantine 1958- |
author_role | aut |
author_sort | Pozrikidis, Constantine 1958- |
author_variant | c p cp |
building | Verbundindex |
bvnumber | BV043797055 |
callnumber-first | Q - Science |
callnumber-label | QA911 |
callnumber-raw | QA911 |
callnumber-search | QA911 |
callnumber-sort | QA 3911 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 4000 UF 4600 |
ctrlnum | (OCoLC)961805661 (DE-599)BVBBV043797055 |
dewey-full | 620.106 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.106 |
dewey-search | 620.106 |
dewey-sort | 3620.106 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
edition | Third edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02750nam a2200553 c 4500</leader><controlfield tag="001">BV043797055</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180628 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160927s2017 gw a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489979902</subfield><subfield code="c">Festeinband</subfield><subfield code="9">978-1-4899-7990-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)961805661</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043797055</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA911</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.106</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4600</subfield><subfield code="0">(DE-625)145590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pozrikidis, Constantine</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13868796X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fluid dynamics</subfield><subfield code="b">theory, computation, and numerical simulation</subfield><subfield code="c">C. Pozrikidis</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 901 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-1-4899-7991-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4899-7991-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029208481&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029208481</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043797055 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:35:25Z |
institution | BVB |
isbn | 9781489979902 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029208481 |
oclc_num | 961805661 |
open_access_boolean | |
owner | DE-11 DE-29T DE-634 DE-703 |
owner_facet | DE-11 DE-29T DE-634 DE-703 |
physical | xix, 901 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
spelling | Pozrikidis, Constantine 1958- Verfasser (DE-588)13868796X aut Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis Third edition New York, NY Springer [2017] © 2017 xix, 901 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier "Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET. Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Hydrodynamik (DE-588)4026302-2 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Hydrodynamik (DE-588)4026302-2 s DE-604 Strömungsmechanik (DE-588)4077970-1 s 1\p DE-604 Erscheint auch als Online-Ausgabe 10.1007/978-1-4899-7991-9 Erscheint auch als Online-Ausgabe 978-1-4899-7991-9 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029208481&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pozrikidis, Constantine 1958- Fluid dynamics theory, computation, and numerical simulation Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Hydrodynamik (DE-588)4026302-2 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
subject_GND | (DE-588)4026302-2 (DE-588)4077970-1 (DE-588)4123623-3 |
title | Fluid dynamics theory, computation, and numerical simulation |
title_auth | Fluid dynamics theory, computation, and numerical simulation |
title_exact_search | Fluid dynamics theory, computation, and numerical simulation |
title_full | Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis |
title_fullStr | Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis |
title_full_unstemmed | Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis |
title_short | Fluid dynamics |
title_sort | fluid dynamics theory computation and numerical simulation |
title_sub | theory, computation, and numerical simulation |
topic | Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Hydrodynamik (DE-588)4026302-2 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
topic_facet | Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Hydrodynamik Strömungsmechanik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029208481&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pozrikidisconstantine fluiddynamicstheorycomputationandnumericalsimulation |