Large Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
2013
|
Schriftenreihe: | Radon series on computational and applied mathematics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Preface; Synergy of inverse problems and data assimilation techniques; 1 Introduction; 2 Regularization theory; 3 Cycling, Tikhonov regularization and 3DVar; 4 Error analysis; 5 Bayesian approach to inverse problems; 6 4DVar; 7 Kalman filter and Kalman smoother; 8 Ensemble methods; 9 Numerical examples; 9.1 Data assimilation for an advection-diffusion system; 9.2 Data assimilation for the Lorenz-95 system; 10 Concluding remarks; Variational data assimilation for very large environmental problems; 1 Introduction; 2 Theory of variational data assimilation 2.1 Incremental variational data assimilation3 Practical implementation; 3.1 Model development; 3.2 Background error covariances; 3.3 Observation errors; 3.4 Optimization methods; 3.5 Reduced order approaches; 3.6 Issues for nested models; 3.7 Weak-constraint variational assimilation; 4 Summary and future perspectives; Ensemble filter techniques for intermittent data assimilation; 1 Bayesian statistics; 1.1 Preliminaries; 1.2 Bayesian inference; 1.3 Coupling of random variables; 1.4 Monte Carlo methods; 2 Stochastic processes; 2.1 Discrete time Markov processes 2.2 Stochastic difference and differential equations2.3 Ensemble prediction and sampling methods; 3 Data assimilation and filtering; 3.1 Preliminaries; 3.2 SequentialMonte Carlo method; 3.3 Ensemble Kalman filter (EnKF); 3.4 Ensemble transform Kalman-Bucy filter; 3.5 Guided sequential Monte Carlo methods; 3.6 Continuous ensemble transform filter formulations; 4 Concluding remarks; Inverse problems in imaging; 1 Mathematicalmodels for images; 2 Examples of imaging devices; 2.1 Optical imaging; 2.2 Transmission tomography; 2.3 Emission tomography; 2.4 MR imaging; 2.5 Acoustic imaging 2.6 Electromagnetic imaging3 Basic image reconstruction; 3.1 Deblurring and point spread functions; 3.2 Noise; 3.3 Reconstruction methods; 4 Missing data and prior information; 4.1 Prior information; 4.2 Undersampling and superresolution; 4.3 Inpainting; 4.4 Surface imaging; 5 Calibration problems; 5.1 Blind deconvolution; 5.2 Nonlinear MR imaging; 5.3 Attenuation correction in SPECT; 5.4 Blind spectral unmixing; 6 Model-based dynamic imaging; 6.1 Kinetic models; 6.2 Parameter identification; 6.3 Basis pursuit; 6.4 Motion and deformation models; 6.5 Advanced PDE models The lost honor of l2-based regularization1 Introduction; 2 l1-based regularization; 3 Poor data; 4 Large, highly ill-conditioned problems; 4.1 Inverse potential problem; 4.2 The effect of ill-conditioning on L1 regularization; 4.3 Nonlinear, highly ill-posed examples; 5 Summary; List of contributors This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications |
Beschreibung: | 216 pages |
ISBN: | 9783110282269 3110282267 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043787290 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783110282269 |9 978-3-11-028226-9 | ||
020 | |a 3110282267 |9 3-11-028226-7 | ||
035 | |a (ZDB-4-EBA)ocn858761758 | ||
035 | |a (OCoLC)858761758 | ||
035 | |a (DE-599)BVBBV043787290 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.357 | |
082 | 0 | |a 515/.357 | |
100 | 1 | |a Scheichl, Robert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Large Scale Inverse Problems |b Computational Methods and Applications in the Earth Sciences |
264 | 1 | |a Berlin |b De Gruyter |c 2013 | |
300 | |a 216 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Radon series on computational and applied mathematics | |
500 | |a Preface; Synergy of inverse problems and data assimilation techniques; 1 Introduction; 2 Regularization theory; 3 Cycling, Tikhonov regularization and 3DVar; 4 Error analysis; 5 Bayesian approach to inverse problems; 6 4DVar; 7 Kalman filter and Kalman smoother; 8 Ensemble methods; 9 Numerical examples; 9.1 Data assimilation for an advection-diffusion system; 9.2 Data assimilation for the Lorenz-95 system; 10 Concluding remarks; Variational data assimilation for very large environmental problems; 1 Introduction; 2 Theory of variational data assimilation | ||
500 | |a 2.1 Incremental variational data assimilation3 Practical implementation; 3.1 Model development; 3.2 Background error covariances; 3.3 Observation errors; 3.4 Optimization methods; 3.5 Reduced order approaches; 3.6 Issues for nested models; 3.7 Weak-constraint variational assimilation; 4 Summary and future perspectives; Ensemble filter techniques for intermittent data assimilation; 1 Bayesian statistics; 1.1 Preliminaries; 1.2 Bayesian inference; 1.3 Coupling of random variables; 1.4 Monte Carlo methods; 2 Stochastic processes; 2.1 Discrete time Markov processes | ||
500 | |a 2.2 Stochastic difference and differential equations2.3 Ensemble prediction and sampling methods; 3 Data assimilation and filtering; 3.1 Preliminaries; 3.2 SequentialMonte Carlo method; 3.3 Ensemble Kalman filter (EnKF); 3.4 Ensemble transform Kalman-Bucy filter; 3.5 Guided sequential Monte Carlo methods; 3.6 Continuous ensemble transform filter formulations; 4 Concluding remarks; Inverse problems in imaging; 1 Mathematicalmodels for images; 2 Examples of imaging devices; 2.1 Optical imaging; 2.2 Transmission tomography; 2.3 Emission tomography; 2.4 MR imaging; 2.5 Acoustic imaging | ||
500 | |a 2.6 Electromagnetic imaging3 Basic image reconstruction; 3.1 Deblurring and point spread functions; 3.2 Noise; 3.3 Reconstruction methods; 4 Missing data and prior information; 4.1 Prior information; 4.2 Undersampling and superresolution; 4.3 Inpainting; 4.4 Surface imaging; 5 Calibration problems; 5.1 Blind deconvolution; 5.2 Nonlinear MR imaging; 5.3 Attenuation correction in SPECT; 5.4 Blind spectral unmixing; 6 Model-based dynamic imaging; 6.1 Kinetic models; 6.2 Parameter identification; 6.3 Basis pursuit; 6.4 Motion and deformation models; 6.5 Advanced PDE models | ||
500 | |a The lost honor of l2-based regularization1 Introduction; 2 l1-based regularization; 3 Poor data; 4 Large, highly ill-conditioned problems; 4.1 Inverse potential problem; 4.2 The effect of ill-conditioning on L1 regularization; 4.3 Nonlinear, highly ill-posed examples; 5 Summary; List of contributors | ||
500 | |a This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications | ||
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Inverse problems (Differential equations) |2 fast | |
650 | 4 | |a Inverse problems (Differential equations) | |
650 | 0 | 7 | |a Inverses Problem |0 (DE-588)4125161-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2011 |z Linz |2 gnd-content | |
689 | 0 | 0 | |a Inverses Problem |0 (DE-588)4125161-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Cullen, Mike |e Sonstige |4 oth | |
700 | 1 | |a Freitag, Melina A. |e Sonstige |4 oth | |
700 | 1 | |a Kindermann, Stefan |e Sonstige |4 oth | |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029198349 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641761 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641761 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176623884304384 |
---|---|
any_adam_object | |
author | Scheichl, Robert |
author_facet | Scheichl, Robert |
author_role | aut |
author_sort | Scheichl, Robert |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV043787290 |
collection | ZDB-4-EBA |
ctrlnum | (ZDB-4-EBA)ocn858761758 (OCoLC)858761758 (DE-599)BVBBV043787290 |
dewey-full | 515.357 515/.357 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.357 515/.357 |
dewey-search | 515.357 515/.357 |
dewey-sort | 3515.357 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05143nmm a2200577zc 4500</leader><controlfield tag="001">BV043787290</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110282269</subfield><subfield code="9">978-3-11-028226-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110282267</subfield><subfield code="9">3-11-028226-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn858761758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858761758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043787290</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.357</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.357</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scheichl, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Large Scale Inverse Problems</subfield><subfield code="b">Computational Methods and Applications in the Earth Sciences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">216 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Radon series on computational and applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Synergy of inverse problems and data assimilation techniques; 1 Introduction; 2 Regularization theory; 3 Cycling, Tikhonov regularization and 3DVar; 4 Error analysis; 5 Bayesian approach to inverse problems; 6 4DVar; 7 Kalman filter and Kalman smoother; 8 Ensemble methods; 9 Numerical examples; 9.1 Data assimilation for an advection-diffusion system; 9.2 Data assimilation for the Lorenz-95 system; 10 Concluding remarks; Variational data assimilation for very large environmental problems; 1 Introduction; 2 Theory of variational data assimilation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1 Incremental variational data assimilation3 Practical implementation; 3.1 Model development; 3.2 Background error covariances; 3.3 Observation errors; 3.4 Optimization methods; 3.5 Reduced order approaches; 3.6 Issues for nested models; 3.7 Weak-constraint variational assimilation; 4 Summary and future perspectives; Ensemble filter techniques for intermittent data assimilation; 1 Bayesian statistics; 1.1 Preliminaries; 1.2 Bayesian inference; 1.3 Coupling of random variables; 1.4 Monte Carlo methods; 2 Stochastic processes; 2.1 Discrete time Markov processes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2 Stochastic difference and differential equations2.3 Ensemble prediction and sampling methods; 3 Data assimilation and filtering; 3.1 Preliminaries; 3.2 SequentialMonte Carlo method; 3.3 Ensemble Kalman filter (EnKF); 3.4 Ensemble transform Kalman-Bucy filter; 3.5 Guided sequential Monte Carlo methods; 3.6 Continuous ensemble transform filter formulations; 4 Concluding remarks; Inverse problems in imaging; 1 Mathematicalmodels for images; 2 Examples of imaging devices; 2.1 Optical imaging; 2.2 Transmission tomography; 2.3 Emission tomography; 2.4 MR imaging; 2.5 Acoustic imaging</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.6 Electromagnetic imaging3 Basic image reconstruction; 3.1 Deblurring and point spread functions; 3.2 Noise; 3.3 Reconstruction methods; 4 Missing data and prior information; 4.1 Prior information; 4.2 Undersampling and superresolution; 4.3 Inpainting; 4.4 Surface imaging; 5 Calibration problems; 5.1 Blind deconvolution; 5.2 Nonlinear MR imaging; 5.3 Attenuation correction in SPECT; 5.4 Blind spectral unmixing; 6 Model-based dynamic imaging; 6.1 Kinetic models; 6.2 Parameter identification; 6.3 Basis pursuit; 6.4 Motion and deformation models; 6.5 Advanced PDE models</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The lost honor of l2-based regularization1 Introduction; 2 l1-based regularization; 3 Poor data; 4 Large, highly ill-conditioned problems; 4.1 Inverse potential problem; 4.2 The effect of ill-conditioning on L1 regularization; 4.3 Nonlinear, highly ill-posed examples; 5 Summary; List of contributors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inverse problems (Differential equations)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse problems (Differential equations)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2011</subfield><subfield code="z">Linz</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cullen, Mike</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freitag, Melina A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kindermann, Stefan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029198349</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641761</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641761</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2011 Linz gnd-content |
genre_facet | Konferenzschrift 2011 Linz |
id | DE-604.BV043787290 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:35:08Z |
institution | BVB |
isbn | 9783110282269 3110282267 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029198349 |
oclc_num | 858761758 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 216 pages |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter |
record_format | marc |
series2 | Radon series on computational and applied mathematics |
spelling | Scheichl, Robert Verfasser aut Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences Berlin De Gruyter 2013 216 pages txt rdacontent c rdamedia cr rdacarrier Radon series on computational and applied mathematics Preface; Synergy of inverse problems and data assimilation techniques; 1 Introduction; 2 Regularization theory; 3 Cycling, Tikhonov regularization and 3DVar; 4 Error analysis; 5 Bayesian approach to inverse problems; 6 4DVar; 7 Kalman filter and Kalman smoother; 8 Ensemble methods; 9 Numerical examples; 9.1 Data assimilation for an advection-diffusion system; 9.2 Data assimilation for the Lorenz-95 system; 10 Concluding remarks; Variational data assimilation for very large environmental problems; 1 Introduction; 2 Theory of variational data assimilation 2.1 Incremental variational data assimilation3 Practical implementation; 3.1 Model development; 3.2 Background error covariances; 3.3 Observation errors; 3.4 Optimization methods; 3.5 Reduced order approaches; 3.6 Issues for nested models; 3.7 Weak-constraint variational assimilation; 4 Summary and future perspectives; Ensemble filter techniques for intermittent data assimilation; 1 Bayesian statistics; 1.1 Preliminaries; 1.2 Bayesian inference; 1.3 Coupling of random variables; 1.4 Monte Carlo methods; 2 Stochastic processes; 2.1 Discrete time Markov processes 2.2 Stochastic difference and differential equations2.3 Ensemble prediction and sampling methods; 3 Data assimilation and filtering; 3.1 Preliminaries; 3.2 SequentialMonte Carlo method; 3.3 Ensemble Kalman filter (EnKF); 3.4 Ensemble transform Kalman-Bucy filter; 3.5 Guided sequential Monte Carlo methods; 3.6 Continuous ensemble transform filter formulations; 4 Concluding remarks; Inverse problems in imaging; 1 Mathematicalmodels for images; 2 Examples of imaging devices; 2.1 Optical imaging; 2.2 Transmission tomography; 2.3 Emission tomography; 2.4 MR imaging; 2.5 Acoustic imaging 2.6 Electromagnetic imaging3 Basic image reconstruction; 3.1 Deblurring and point spread functions; 3.2 Noise; 3.3 Reconstruction methods; 4 Missing data and prior information; 4.1 Prior information; 4.2 Undersampling and superresolution; 4.3 Inpainting; 4.4 Surface imaging; 5 Calibration problems; 5.1 Blind deconvolution; 5.2 Nonlinear MR imaging; 5.3 Attenuation correction in SPECT; 5.4 Blind spectral unmixing; 6 Model-based dynamic imaging; 6.1 Kinetic models; 6.2 Parameter identification; 6.3 Basis pursuit; 6.4 Motion and deformation models; 6.5 Advanced PDE models The lost honor of l2-based regularization1 Introduction; 2 l1-based regularization; 3 Poor data; 4 Large, highly ill-conditioned problems; 4.1 Inverse potential problem; 4.2 The effect of ill-conditioning on L1 regularization; 4.3 Nonlinear, highly ill-posed examples; 5 Summary; List of contributors This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Inverse problems (Differential equations) fast Inverse problems (Differential equations) Inverses Problem (DE-588)4125161-1 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2011 Linz gnd-content Inverses Problem (DE-588)4125161-1 s 2\p DE-604 Cullen, Mike Sonstige oth Freitag, Melina A. Sonstige oth Kindermann, Stefan Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Scheichl, Robert Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Inverse problems (Differential equations) fast Inverse problems (Differential equations) Inverses Problem (DE-588)4125161-1 gnd |
subject_GND | (DE-588)4125161-1 (DE-588)1071861417 |
title | Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences |
title_auth | Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences |
title_exact_search | Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences |
title_full | Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences |
title_fullStr | Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences |
title_full_unstemmed | Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences |
title_short | Large Scale Inverse Problems |
title_sort | large scale inverse problems computational methods and applications in the earth sciences |
title_sub | Computational Methods and Applications in the Earth Sciences |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Inverse problems (Differential equations) fast Inverse problems (Differential equations) Inverses Problem (DE-588)4125161-1 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Inverse problems (Differential equations) Inverses Problem Konferenzschrift 2011 Linz |
work_keys_str_mv | AT scheichlrobert largescaleinverseproblemscomputationalmethodsandapplicationsintheearthsciences AT cullenmike largescaleinverseproblemscomputationalmethodsandapplicationsintheearthsciences AT freitagmelinaa largescaleinverseproblemscomputationalmethodsandapplicationsintheearthsciences AT kindermannstefan largescaleinverseproblemscomputationalmethodsandapplicationsintheearthsciences |