Mathematical physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Chicago
University of Chicago Press
1985
|
Schriftenreihe: | Chicago lectures in physics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Includes index Description based on print version record |
Beschreibung: | 1 online resource (358 pages) illustrations |
ISBN: | 9780226223063 022622306X 0226288625 0226288617 9780226288611 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043784565 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780226223063 |9 978-0-226-22306-3 | ||
020 | |a 022622306X |9 0-226-22306-X | ||
020 | |a 0226288625 |c pbk. |9 0-226-28862-5 | ||
020 | |a 0226288617 |c hard |9 0-226-28861-7 | ||
020 | |a 9780226288611 |9 978-0-226-28861-1 | ||
035 | |a (ZDB-4-EBA)ocn908039384 | ||
035 | |a (OCoLC)908039384 | ||
035 | |a (DE-599)BVBBV043784565 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.1/5 |2 19eng | |
100 | 1 | |a Geroch, Robert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical physics |c Robert Geroch |
264 | 1 | |a Chicago |b University of Chicago Press |c 1985 | |
300 | |a 1 online resource (358 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Chicago lectures in physics | |
500 | |a Includes index | ||
500 | |a Description based on print version record | ||
505 | 8 | |a 1 . Introduction; 2 . Categories; 3. The Category of Groups; 4. Subgroups; 5 . Normal Subgroups; 6. Homomorphisms; 7. Direct Products and Sums of Groups; 8. Relations; 9. The Category of Vector Spaces; 10 . Subspaces; 11 . Linear Mappings; Direct Products and Sums; 12 . From Real to Complex Vector Spaces and Back; 13 . Duals; 14 . Multilinear Mappings; Tensor Products; 15 . Example: Minkowski Vector Space; 16 . Example: The Lorentz Group; 17 . Functors; 18 . The Category of Associative Algebras; 19 . The Category of Lie Algebras; 20 . Example: The Algebra of Observables | |
505 | 8 | |a 21. Example: Fock Vector Space22. Representations: General Theory; 23 . Representations on Vector Spaces; 24 . The Algebraic Categories: Summary; 25 . Subsets and Mappings; 26. Topological Spaces; 27. Continuous Mappings; 28 . The Category of Topological Spaces; 29. Nets; 30. Compactness; 31. The Compact-Open Topology; 32. Connectedness; 33. Example: Dynamical Systems; 34. Homotopy; 35. Homology; 36. Homology: Relation to Homotopy; 37. The Homology Functors; 38. Uniform Spaces; 39. The Completion of a Uniform Space; 40. Topological Groups; 41. Topological Vector Spaces | |
505 | 8 | |a 42. Categories: Summary43. Measure Spaces; 44. Constructing Measure Spaces; 45. Measurable Functions; 46. Integrals; 47. Distributions; 48. Hilbert Spaces; 49. Bounded Operators; 50. The Spectrum of a Bounded Operator; 51. The Spectral Theorem: Finite-dimensional Case; 52. Continuous Functions of a Hermitian Operator; 53. Other Functions of a Hermitian Operator; 54. The Spectral Theorem; 55. Operators (Not Necessarily Bounded); 56. Self-Adjoint Operators; Index of Defined Terms | |
505 | 8 | |a Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle | |
650 | 7 | |a SCIENCE / Energy |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics / General |2 bisacsh | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 4 | |a Green's functions | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Geroch, Robert |t Mathematical physics |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029195625 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046952 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046952 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176617499525120 |
---|---|
any_adam_object | |
author | Geroch, Robert |
author_facet | Geroch, Robert |
author_role | aut |
author_sort | Geroch, Robert |
author_variant | r g rg |
building | Verbundindex |
bvnumber | BV043784565 |
collection | ZDB-4-EBA |
contents | 1 . Introduction; 2 . Categories; 3. The Category of Groups; 4. Subgroups; 5 . Normal Subgroups; 6. Homomorphisms; 7. Direct Products and Sums of Groups; 8. Relations; 9. The Category of Vector Spaces; 10 . Subspaces; 11 . Linear Mappings; Direct Products and Sums; 12 . From Real to Complex Vector Spaces and Back; 13 . Duals; 14 . Multilinear Mappings; Tensor Products; 15 . Example: Minkowski Vector Space; 16 . Example: The Lorentz Group; 17 . Functors; 18 . The Category of Associative Algebras; 19 . The Category of Lie Algebras; 20 . Example: The Algebra of Observables 21. Example: Fock Vector Space22. Representations: General Theory; 23 . Representations on Vector Spaces; 24 . The Algebraic Categories: Summary; 25 . Subsets and Mappings; 26. Topological Spaces; 27. Continuous Mappings; 28 . The Category of Topological Spaces; 29. Nets; 30. Compactness; 31. The Compact-Open Topology; 32. Connectedness; 33. Example: Dynamical Systems; 34. Homotopy; 35. Homology; 36. Homology: Relation to Homotopy; 37. The Homology Functors; 38. Uniform Spaces; 39. The Completion of a Uniform Space; 40. Topological Groups; 41. Topological Vector Spaces 42. Categories: Summary43. Measure Spaces; 44. Constructing Measure Spaces; 45. Measurable Functions; 46. Integrals; 47. Distributions; 48. Hilbert Spaces; 49. Bounded Operators; 50. The Spectrum of a Bounded Operator; 51. The Spectral Theorem: Finite-dimensional Case; 52. Continuous Functions of a Hermitian Operator; 53. Other Functions of a Hermitian Operator; 54. The Spectral Theorem; 55. Operators (Not Necessarily Bounded); 56. Self-Adjoint Operators; Index of Defined Terms Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle |
ctrlnum | (ZDB-4-EBA)ocn908039384 (OCoLC)908039384 (DE-599)BVBBV043784565 |
dewey-full | 530.1/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/5 |
dewey-search | 530.1/5 |
dewey-sort | 3530.1 15 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04955nmm a2200721zc 4500</leader><controlfield tag="001">BV043784565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780226223063</subfield><subfield code="9">978-0-226-22306-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">022622306X</subfield><subfield code="9">0-226-22306-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0226288625</subfield><subfield code="c">pbk.</subfield><subfield code="9">0-226-28862-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0226288617</subfield><subfield code="c">hard</subfield><subfield code="9">0-226-28861-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780226288611</subfield><subfield code="9">978-0-226-28861-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn908039384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)908039384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043784565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/5</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geroch, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical physics</subfield><subfield code="c">Robert Geroch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chicago</subfield><subfield code="b">University of Chicago Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (358 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chicago lectures in physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1 . Introduction; 2 . Categories; 3. The Category of Groups; 4. Subgroups; 5 . Normal Subgroups; 6. Homomorphisms; 7. Direct Products and Sums of Groups; 8. Relations; 9. The Category of Vector Spaces; 10 . Subspaces; 11 . Linear Mappings; Direct Products and Sums; 12 . From Real to Complex Vector Spaces and Back; 13 . Duals; 14 . Multilinear Mappings; Tensor Products; 15 . Example: Minkowski Vector Space; 16 . Example: The Lorentz Group; 17 . Functors; 18 . The Category of Associative Algebras; 19 . The Category of Lie Algebras; 20 . Example: The Algebra of Observables</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">21. Example: Fock Vector Space22. Representations: General Theory; 23 . Representations on Vector Spaces; 24 . The Algebraic Categories: Summary; 25 . Subsets and Mappings; 26. Topological Spaces; 27. Continuous Mappings; 28 . The Category of Topological Spaces; 29. Nets; 30. Compactness; 31. The Compact-Open Topology; 32. Connectedness; 33. Example: Dynamical Systems; 34. Homotopy; 35. Homology; 36. Homology: Relation to Homotopy; 37. The Homology Functors; 38. Uniform Spaces; 39. The Completion of a Uniform Space; 40. Topological Groups; 41. Topological Vector Spaces</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">42. Categories: Summary43. Measure Spaces; 44. Constructing Measure Spaces; 45. Measurable Functions; 46. Integrals; 47. Distributions; 48. Hilbert Spaces; 49. Bounded Operators; 50. The Spectrum of a Bounded Operator; 51. The Spectral Theorem: Finite-dimensional Case; 52. Continuous Functions of a Hermitian Operator; 53. Other Functions of a Hermitian Operator; 54. The Spectral Theorem; 55. Operators (Not Necessarily Bounded); 56. Self-Adjoint Operators; Index of Defined Terms</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Energy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green's functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Geroch, Robert</subfield><subfield code="t">Mathematical physics</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029195625</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046952</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046952</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043784565 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:35:02Z |
institution | BVB |
isbn | 9780226223063 022622306X 0226288625 0226288617 9780226288611 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029195625 |
oclc_num | 908039384 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (358 pages) illustrations |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | University of Chicago Press |
record_format | marc |
series2 | Chicago lectures in physics |
spelling | Geroch, Robert Verfasser aut Mathematical physics Robert Geroch Chicago University of Chicago Press 1985 1 online resource (358 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Chicago lectures in physics Includes index Description based on print version record 1 . Introduction; 2 . Categories; 3. The Category of Groups; 4. Subgroups; 5 . Normal Subgroups; 6. Homomorphisms; 7. Direct Products and Sums of Groups; 8. Relations; 9. The Category of Vector Spaces; 10 . Subspaces; 11 . Linear Mappings; Direct Products and Sums; 12 . From Real to Complex Vector Spaces and Back; 13 . Duals; 14 . Multilinear Mappings; Tensor Products; 15 . Example: Minkowski Vector Space; 16 . Example: The Lorentz Group; 17 . Functors; 18 . The Category of Associative Algebras; 19 . The Category of Lie Algebras; 20 . Example: The Algebra of Observables 21. Example: Fock Vector Space22. Representations: General Theory; 23 . Representations on Vector Spaces; 24 . The Algebraic Categories: Summary; 25 . Subsets and Mappings; 26. Topological Spaces; 27. Continuous Mappings; 28 . The Category of Topological Spaces; 29. Nets; 30. Compactness; 31. The Compact-Open Topology; 32. Connectedness; 33. Example: Dynamical Systems; 34. Homotopy; 35. Homology; 36. Homology: Relation to Homotopy; 37. The Homology Functors; 38. Uniform Spaces; 39. The Completion of a Uniform Space; 40. Topological Groups; 41. Topological Vector Spaces 42. Categories: Summary43. Measure Spaces; 44. Constructing Measure Spaces; 45. Measurable Functions; 46. Integrals; 47. Distributions; 48. Hilbert Spaces; 49. Bounded Operators; 50. The Spectrum of a Bounded Operator; 51. The Spectral Theorem: Finite-dimensional Case; 52. Continuous Functions of a Hermitian Operator; 53. Other Functions of a Hermitian Operator; 54. The Spectral Theorem; 55. Operators (Not Necessarily Bounded); 56. Self-Adjoint Operators; Index of Defined Terms Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Mathematical physics fast Green's functions Mathematical physics Mathematics Mathematik Mathematische Physik Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 Physik (DE-588)4045956-1 s 2\p DE-604 Mathematische Methode (DE-588)4155620-3 s 3\p DE-604 Erscheint auch als Druck-Ausgabe Geroch, Robert Mathematical physics 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Geroch, Robert Mathematical physics 1 . Introduction; 2 . Categories; 3. The Category of Groups; 4. Subgroups; 5 . Normal Subgroups; 6. Homomorphisms; 7. Direct Products and Sums of Groups; 8. Relations; 9. The Category of Vector Spaces; 10 . Subspaces; 11 . Linear Mappings; Direct Products and Sums; 12 . From Real to Complex Vector Spaces and Back; 13 . Duals; 14 . Multilinear Mappings; Tensor Products; 15 . Example: Minkowski Vector Space; 16 . Example: The Lorentz Group; 17 . Functors; 18 . The Category of Associative Algebras; 19 . The Category of Lie Algebras; 20 . Example: The Algebra of Observables 21. Example: Fock Vector Space22. Representations: General Theory; 23 . Representations on Vector Spaces; 24 . The Algebraic Categories: Summary; 25 . Subsets and Mappings; 26. Topological Spaces; 27. Continuous Mappings; 28 . The Category of Topological Spaces; 29. Nets; 30. Compactness; 31. The Compact-Open Topology; 32. Connectedness; 33. Example: Dynamical Systems; 34. Homotopy; 35. Homology; 36. Homology: Relation to Homotopy; 37. The Homology Functors; 38. Uniform Spaces; 39. The Completion of a Uniform Space; 40. Topological Groups; 41. Topological Vector Spaces 42. Categories: Summary43. Measure Spaces; 44. Constructing Measure Spaces; 45. Measurable Functions; 46. Integrals; 47. Distributions; 48. Hilbert Spaces; 49. Bounded Operators; 50. The Spectrum of a Bounded Operator; 51. The Spectral Theorem: Finite-dimensional Case; 52. Continuous Functions of a Hermitian Operator; 53. Other Functions of a Hermitian Operator; 54. The Spectral Theorem; 55. Operators (Not Necessarily Bounded); 56. Self-Adjoint Operators; Index of Defined Terms Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Mathematical physics fast Green's functions Mathematical physics Mathematics Mathematik Mathematische Physik Mathematische Physik (DE-588)4037952-8 gnd Mathematische Methode (DE-588)4155620-3 gnd Physik (DE-588)4045956-1 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4155620-3 (DE-588)4045956-1 |
title | Mathematical physics |
title_auth | Mathematical physics |
title_exact_search | Mathematical physics |
title_full | Mathematical physics Robert Geroch |
title_fullStr | Mathematical physics Robert Geroch |
title_full_unstemmed | Mathematical physics Robert Geroch |
title_short | Mathematical physics |
title_sort | mathematical physics |
topic | SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Mathematical physics fast Green's functions Mathematical physics Mathematics Mathematik Mathematische Physik Mathematische Physik (DE-588)4037952-8 gnd Mathematische Methode (DE-588)4155620-3 gnd Physik (DE-588)4045956-1 gnd |
topic_facet | SCIENCE / Energy SCIENCE / Mechanics / General SCIENCE / Physics / General Mathematical physics Green's functions Mathematics Mathematik Mathematische Physik Mathematische Methode Physik |
work_keys_str_mv | AT gerochrobert mathematicalphysics |