Renormalization and 3-manifolds which fiber over the circle:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, New Jersey
Princeton University Press
1996
|
Schriftenreihe: | Annals of mathematics studies
Number 142 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (264 pages) illustrations, tables |
ISBN: | 9781400865178 1400865174 9780691011530 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043782993 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781400865178 |9 978-1-4008-6517-8 | ||
020 | |a 1400865174 |9 1-4008-6517-4 | ||
020 | |a 9780691011530 |9 978-0-691-01153-0 | ||
035 | |a (ZDB-4-EBA)ocn891400016 | ||
035 | |a (OCoLC)891400016 | ||
035 | |a (DE-599)BVBBV043782993 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514/.3 |2 20 | |
100 | 1 | |a McMullen, Curtis T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Renormalization and 3-manifolds which fiber over the circle |c by Curtis T. McMullen |
264 | 1 | |a Princeton, New Jersey |b Princeton University Press |c 1996 | |
264 | 4 | |c © 1996 | |
300 | |a 1 online resource (264 pages) |b illustrations, tables | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v Number 142 | |
500 | |a Print version record | ||
505 | 8 | |a Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains | |
505 | 8 | |a 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization | |
505 | 8 | |a 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows | |
505 | 8 | |a A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index | |
505 | 8 | |a Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Three-manifolds (Topology) | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / Analytic |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Three-manifolds (Topology) |2 fast | |
650 | 4 | |a Three-manifolds (Topology) |a Differentiable dynamical systems | |
650 | 0 | 7 | |a Renormierung |0 (DE-588)4128419-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | 2 | |a Renormierung |0 (DE-588)4128419-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a McMullen, Curtis T |t . Renormalization and 3-manifolds which fiber over the circle |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029194053 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176614611746816 |
---|---|
any_adam_object | |
author | McMullen, Curtis T. |
author_facet | McMullen, Curtis T. |
author_role | aut |
author_sort | McMullen, Curtis T. |
author_variant | c t m ct ctm |
building | Verbundindex |
bvnumber | BV043782993 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan |
ctrlnum | (ZDB-4-EBA)ocn891400016 (OCoLC)891400016 (DE-599)BVBBV043782993 |
dewey-full | 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 |
dewey-search | 514/.3 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05285nmm a2200625zcb4500</leader><controlfield tag="001">BV043782993</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400865178</subfield><subfield code="9">978-1-4008-6517-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400865174</subfield><subfield code="9">1-4008-6517-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691011530</subfield><subfield code="9">978-0-691-01153-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn891400016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891400016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043782993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McMullen, Curtis T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renormalization and 3-manifolds which fiber over the circle</subfield><subfield code="c">by Curtis T. McMullen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, New Jersey</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (264 pages)</subfield><subfield code="b">illustrations, tables</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 142</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Analytic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Renormierung</subfield><subfield code="0">(DE-588)4128419-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Renormierung</subfield><subfield code="0">(DE-588)4128419-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">McMullen, Curtis T</subfield><subfield code="t">. Renormalization and 3-manifolds which fiber over the circle</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029194053</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043782993 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:34:59Z |
institution | BVB |
isbn | 9781400865178 1400865174 9780691011530 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029194053 |
oclc_num | 891400016 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (264 pages) illustrations, tables |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | McMullen, Curtis T. Verfasser aut Renormalization and 3-manifolds which fiber over the circle by Curtis T. McMullen Princeton, New Jersey Princeton University Press 1996 © 1996 1 online resource (264 pages) illustrations, tables txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 142 Print version record Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan Differentiable dynamical systems Three-manifolds (Topology) MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / Analytic bisacsh Differentiable dynamical systems fast Three-manifolds (Topology) fast Three-manifolds (Topology) Differentiable dynamical systems Renormierung (DE-588)4128419-7 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Dimension 3 (DE-588)4321722-9 s Renormierung (DE-588)4128419-7 s 1\p DE-604 Erscheint auch als Druck-Ausgabe McMullen, Curtis T . Renormalization and 3-manifolds which fiber over the circle 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | McMullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan Differentiable dynamical systems Three-manifolds (Topology) MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / Analytic bisacsh Differentiable dynamical systems fast Three-manifolds (Topology) fast Three-manifolds (Topology) Differentiable dynamical systems Renormierung (DE-588)4128419-7 gnd Dimension 3 (DE-588)4321722-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4128419-7 (DE-588)4321722-9 (DE-588)4037379-4 |
title | Renormalization and 3-manifolds which fiber over the circle |
title_auth | Renormalization and 3-manifolds which fiber over the circle |
title_exact_search | Renormalization and 3-manifolds which fiber over the circle |
title_full | Renormalization and 3-manifolds which fiber over the circle by Curtis T. McMullen |
title_fullStr | Renormalization and 3-manifolds which fiber over the circle by Curtis T. McMullen |
title_full_unstemmed | Renormalization and 3-manifolds which fiber over the circle by Curtis T. McMullen |
title_short | Renormalization and 3-manifolds which fiber over the circle |
title_sort | renormalization and 3 manifolds which fiber over the circle |
topic | Differentiable dynamical systems Three-manifolds (Topology) MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / Analytic bisacsh Differentiable dynamical systems fast Three-manifolds (Topology) fast Three-manifolds (Topology) Differentiable dynamical systems Renormierung (DE-588)4128419-7 gnd Dimension 3 (DE-588)4321722-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Differentiable dynamical systems Three-manifolds (Topology) MATHEMATICS / Topology MATHEMATICS / Geometry / Analytic Three-manifolds (Topology) Differentiable dynamical systems Renormierung Dimension 3 Mannigfaltigkeit |
work_keys_str_mv | AT mcmullencurtist renormalizationand3manifoldswhichfiberoverthecircle |