Euler systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, New Jersey ; Chichester, England
Princeton University Press
2000
|
Schriftenreihe: | Annals of mathematics studies
Number 147 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (241 pages) |
ISBN: | 9781400865208 1400865204 9780691050768 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043782990 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781400865208 |9 978-1-4008-6520-8 | ||
020 | |a 1400865204 |9 1-4008-6520-4 | ||
020 | |a 9780691050768 |9 978-0-691-05076-8 | ||
035 | |a (ZDB-4-EBA)ocn891400001 | ||
035 | |a (OCoLC)891400001 | ||
035 | |a (DE-599)BVBBV043782990 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.74 |2 21 | |
100 | 1 | |a Rubin, Karl |e Verfasser |4 aut | |
245 | 1 | 0 | |a Euler systems |c by Karl Rubin |
264 | 1 | |a Princeton, New Jersey ; Chichester, England |b Princeton University Press |c 2000 | |
264 | 4 | |c © 2000 | |
300 | |a 1 online resource (241 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v Number 147 | |
500 | |a Print version record | ||
505 | 8 | |a One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic | |
650 | 4 | |a Algebraic number theory | |
650 | 4 | |a p-adic numbers | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Algebraic number theory |2 fast | |
650 | 7 | |a p-adic numbers |2 fast | |
650 | 4 | |a Algebraic number theory |a p-adic numbers | |
650 | 0 | 7 | |a p-adische L-Funktion |0 (DE-588)4398270-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kreiskörper |0 (DE-588)4165607-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Galois-Kohomologie |0 (DE-588)4019172-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Kurve |0 (DE-588)4014487-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a p-adische L-Funktion |0 (DE-588)4398270-0 |D s |
689 | 0 | 1 | |a Galois-Kohomologie |0 (DE-588)4019172-2 |D s |
689 | 0 | 2 | |a Kreiskörper |0 (DE-588)4165607-6 |D s |
689 | 0 | 3 | |a Elliptische Kurve |0 (DE-588)4014487-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Rubin, Karl |t Euler systems |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029194050 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818441 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818441 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176614601261056 |
---|---|
any_adam_object | |
author | Rubin, Karl |
author_facet | Rubin, Karl |
author_role | aut |
author_sort | Rubin, Karl |
author_variant | k r kr |
building | Verbundindex |
bvnumber | BV043782990 |
collection | ZDB-4-EBA |
contents | One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic |
ctrlnum | (ZDB-4-EBA)ocn891400001 (OCoLC)891400001 (DE-599)BVBBV043782990 |
dewey-full | 512/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.74 |
dewey-search | 512/.74 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02987nmm a2200601zcb4500</leader><controlfield tag="001">BV043782990</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400865208</subfield><subfield code="9">978-1-4008-6520-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400865204</subfield><subfield code="9">1-4008-6520-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691050768</subfield><subfield code="9">978-0-691-05076-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn891400001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891400001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043782990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rubin, Karl</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Euler systems</subfield><subfield code="c">by Karl Rubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, New Jersey ; Chichester, England</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (241 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 147</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">p-adic numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory</subfield><subfield code="a">p-adic numbers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische L-Funktion</subfield><subfield code="0">(DE-588)4398270-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kreiskörper</subfield><subfield code="0">(DE-588)4165607-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Kohomologie</subfield><subfield code="0">(DE-588)4019172-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">p-adische L-Funktion</subfield><subfield code="0">(DE-588)4398270-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Galois-Kohomologie</subfield><subfield code="0">(DE-588)4019172-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kreiskörper</subfield><subfield code="0">(DE-588)4165607-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Rubin, Karl</subfield><subfield code="t">Euler systems</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029194050</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818441</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818441</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043782990 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:59Z |
institution | BVB |
isbn | 9781400865208 1400865204 9780691050768 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029194050 |
oclc_num | 891400001 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (241 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Rubin, Karl Verfasser aut Euler systems by Karl Rubin Princeton, New Jersey ; Chichester, England Princeton University Press 2000 © 2000 1 online resource (241 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 147 Print version record One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic Algebraic number theory p-adic numbers MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Number Theory bisacsh Algebraic number theory fast p-adic numbers fast Algebraic number theory p-adic numbers p-adische L-Funktion (DE-588)4398270-0 gnd rswk-swf Kreiskörper (DE-588)4165607-6 gnd rswk-swf Galois-Kohomologie (DE-588)4019172-2 gnd rswk-swf Elliptische Kurve (DE-588)4014487-2 gnd rswk-swf p-adische L-Funktion (DE-588)4398270-0 s Galois-Kohomologie (DE-588)4019172-2 s Kreiskörper (DE-588)4165607-6 s Elliptische Kurve (DE-588)4014487-2 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Rubin, Karl Euler systems 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rubin, Karl Euler systems One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic Algebraic number theory p-adic numbers MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Number Theory bisacsh Algebraic number theory fast p-adic numbers fast Algebraic number theory p-adic numbers p-adische L-Funktion (DE-588)4398270-0 gnd Kreiskörper (DE-588)4165607-6 gnd Galois-Kohomologie (DE-588)4019172-2 gnd Elliptische Kurve (DE-588)4014487-2 gnd |
subject_GND | (DE-588)4398270-0 (DE-588)4165607-6 (DE-588)4019172-2 (DE-588)4014487-2 |
title | Euler systems |
title_auth | Euler systems |
title_exact_search | Euler systems |
title_full | Euler systems by Karl Rubin |
title_fullStr | Euler systems by Karl Rubin |
title_full_unstemmed | Euler systems by Karl Rubin |
title_short | Euler systems |
title_sort | euler systems |
topic | Algebraic number theory p-adic numbers MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Number Theory bisacsh Algebraic number theory fast p-adic numbers fast Algebraic number theory p-adic numbers p-adische L-Funktion (DE-588)4398270-0 gnd Kreiskörper (DE-588)4165607-6 gnd Galois-Kohomologie (DE-588)4019172-2 gnd Elliptische Kurve (DE-588)4014487-2 gnd |
topic_facet | Algebraic number theory p-adic numbers MATHEMATICS / Algebra / Intermediate MATHEMATICS / Number Theory Algebraic number theory p-adic numbers p-adische L-Funktion Kreiskörper Galois-Kohomologie Elliptische Kurve |
work_keys_str_mv | AT rubinkarl eulersystems |