Impulsive differential inclusions: a fixed point approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
Walter de Gruyter GmbH
[2013]
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications
20 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (x, 400 pages) illustrations |
ISBN: | 3110295318 9783110295313 9783110293616 3110293617 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043781282 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2013 |||| o||u| ||||||eng d | ||
020 | |a 3110295318 |9 3-11-029531-8 | ||
020 | |a 9783110295313 |9 978-3-11-029531-3 | ||
020 | |a 9783110293616 |9 978-3-11-029361-6 | ||
020 | |a 3110293617 |9 3-11-029361-7 | ||
035 | |a (ZDB-4-EBA)ocn880737219 | ||
035 | |a (OCoLC)880737219 | ||
035 | |a (DE-599)BVBBV043781282 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.352 |2 23 | |
100 | 1 | |a Graef, John R. |d 1942- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Impulsive differential inclusions |b a fixed point approach |c John R. Graef, Johnny Henderson, Abdelghani Ouahab |
264 | 1 | |a Berlin ; Boston |b Walter de Gruyter GmbH |c [2013] | |
300 | |a 1 online resource (x, 400 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in nonlinear analysis and applications |v 20 | |
500 | |a Print version record | ||
505 | 8 | |a Notations; 1 Introduction and Motivations; 1.1 Introduction; 1.2 Motivational Models; 1.2.1 Kruger-Thiemer Model; 1.2.2 Lotka-Volterra Model; 1.2.3 Pulse Vaccination Model; 1.2.4 Management Model; 1.2.5 Some Examples in Economics and Biomathematics; 2 Preliminaries; 2.1 Some Definitions; 2.2 Some Properties in Frchet Spaces; 2.3 Some Properties of Set-valued Maps; 2.3.1 Hausdorff Metric Topology; 2.3.2 Vietoris Topology; 2.3.3 Continuity Concepts and Their Relations; 2.3.4 Selection Functions and Selection Theorems; 2.3.5 Hausdorff Continuity; 2.3.6 Measurable Multifunctions | |
505 | 8 | |a 2.3.7 Decomposable Selection2.4 Fixed Point Theorems; 2.5 Measures of Noncompactness: MNC; 2.6 Semigroups; 2.6.1 C0-semigroups; 2.6.2 Integrated Semigroups; 2.6.3 Examples; 2.7 Extrapolation Spaces; 3 FDEs with Infinite Delay; 3.1 First Order FDEs; 3.1.1 Examples of Phase Spaces; 3.1.2 Existence and Uniqueness on Compact Intervals; 3.1.3 An Example; 3.2 FDEs with Multiple Delays; 3.2.1 Existence and Uniqueness Result on a Compact Interval; 3.2.2 Global Existence and Uniqueness Result; 3.3 Stability; 3.3.1 Stability Result; 3.4 Second Order Impulsive FDEs | |
505 | 8 | |a 3.4.1 Existence and Uniqueness Results3.5 Global Existence and Uniqueness Result; 3.5.1 Uniqueness Result; 3.5.2 Example; 3.5.3 Stability; 4 Boundary Value Problems on Infinite Intervals; 4.1 Introduction; 4.1.1 Existence Result; 4.1.2 Uniqueness Result; 4.1.3 Example; 5 Differential Inclusions; 5.1 Introduction; 5.1.1 Filippov's Theorem; 5.1.2 Relaxation Theorem; 5.2 Functional Differential Inclusions; 5.2.1 Filippov's Theorem for FDIs; 5.2.2 Some Properties of Solution Sets; 5.3 Upper Semicontinuity without Convexity; 5.3.1 Nonconvex Theorem and Upper Semicontinuity; 5.3.2 An Application | |
505 | 8 | |a 5.4 Inclusions with Dissipative Right Hand Side5.4.1 Existence and Uniqueness Result; 5.5 Directionally Continuous Selection and IDIs; 5.5.1 Directional Continuity; 6 Differential Inclusions with Infinite Delay; 6.1 Existence Results; 6.2 Boundary Differential Inclusions; 7 Impulsive FDEs with Variable Times; 7.1 Introduction; 7.1.1 Existence Results; 7.1.2 Neutral Functional Differential Equations; 7.2 Impulsive Hyperbolic Differential Inclusions with Infinite Delay; 7.3 Existence Results; 7.3.1 Phase Spaces; 7.3.2 The Nonconvex Case; 8 Neutral Differential Inclusions; 8.1 Filippov's Theorem | |
505 | 8 | |a Impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, etc. The questions of existence and stability of solutions for different classes of initial values problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems and relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simple | |
650 | 7 | |a Boundary value problems |2 fast | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Prediction theory |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 4 | |a Stochastic processes |a Boundary value problems |a Differential equations |a Prediction theory | |
650 | 0 | 7 | |a Differentialinklusion |0 (DE-588)4149777-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Impulsdifferentialgleichung |0 (DE-588)4339336-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fixpunkt-Methode |0 (DE-588)4139170-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Impulsdifferentialgleichung |0 (DE-588)4339336-6 |D s |
689 | 0 | 1 | |a Differentialinklusion |0 (DE-588)4149777-6 |D s |
689 | 0 | 2 | |a Fixpunkt-Methode |0 (DE-588)4139170-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Henderson, Johnny |e Sonstige |4 oth | |
700 | 1 | |a Ouahab, Abdelghani |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Graef, John R |t , 1942-. Impulsive differential inclusions |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029192342 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641778 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641778 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176611642179584 |
---|---|
any_adam_object | |
author | Graef, John R. 1942- |
author_facet | Graef, John R. 1942- |
author_role | aut |
author_sort | Graef, John R. 1942- |
author_variant | j r g jr jrg |
building | Verbundindex |
bvnumber | BV043781282 |
collection | ZDB-4-EBA |
contents | Notations; 1 Introduction and Motivations; 1.1 Introduction; 1.2 Motivational Models; 1.2.1 Kruger-Thiemer Model; 1.2.2 Lotka-Volterra Model; 1.2.3 Pulse Vaccination Model; 1.2.4 Management Model; 1.2.5 Some Examples in Economics and Biomathematics; 2 Preliminaries; 2.1 Some Definitions; 2.2 Some Properties in Frchet Spaces; 2.3 Some Properties of Set-valued Maps; 2.3.1 Hausdorff Metric Topology; 2.3.2 Vietoris Topology; 2.3.3 Continuity Concepts and Their Relations; 2.3.4 Selection Functions and Selection Theorems; 2.3.5 Hausdorff Continuity; 2.3.6 Measurable Multifunctions 2.3.7 Decomposable Selection2.4 Fixed Point Theorems; 2.5 Measures of Noncompactness: MNC; 2.6 Semigroups; 2.6.1 C0-semigroups; 2.6.2 Integrated Semigroups; 2.6.3 Examples; 2.7 Extrapolation Spaces; 3 FDEs with Infinite Delay; 3.1 First Order FDEs; 3.1.1 Examples of Phase Spaces; 3.1.2 Existence and Uniqueness on Compact Intervals; 3.1.3 An Example; 3.2 FDEs with Multiple Delays; 3.2.1 Existence and Uniqueness Result on a Compact Interval; 3.2.2 Global Existence and Uniqueness Result; 3.3 Stability; 3.3.1 Stability Result; 3.4 Second Order Impulsive FDEs 3.4.1 Existence and Uniqueness Results3.5 Global Existence and Uniqueness Result; 3.5.1 Uniqueness Result; 3.5.2 Example; 3.5.3 Stability; 4 Boundary Value Problems on Infinite Intervals; 4.1 Introduction; 4.1.1 Existence Result; 4.1.2 Uniqueness Result; 4.1.3 Example; 5 Differential Inclusions; 5.1 Introduction; 5.1.1 Filippov's Theorem; 5.1.2 Relaxation Theorem; 5.2 Functional Differential Inclusions; 5.2.1 Filippov's Theorem for FDIs; 5.2.2 Some Properties of Solution Sets; 5.3 Upper Semicontinuity without Convexity; 5.3.1 Nonconvex Theorem and Upper Semicontinuity; 5.3.2 An Application 5.4 Inclusions with Dissipative Right Hand Side5.4.1 Existence and Uniqueness Result; 5.5 Directionally Continuous Selection and IDIs; 5.5.1 Directional Continuity; 6 Differential Inclusions with Infinite Delay; 6.1 Existence Results; 6.2 Boundary Differential Inclusions; 7 Impulsive FDEs with Variable Times; 7.1 Introduction; 7.1.1 Existence Results; 7.1.2 Neutral Functional Differential Equations; 7.2 Impulsive Hyperbolic Differential Inclusions with Infinite Delay; 7.3 Existence Results; 7.3.1 Phase Spaces; 7.3.2 The Nonconvex Case; 8 Neutral Differential Inclusions; 8.1 Filippov's Theorem Impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, etc. The questions of existence and stability of solutions for different classes of initial values problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems and relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simple |
ctrlnum | (ZDB-4-EBA)ocn880737219 (OCoLC)880737219 (DE-599)BVBBV043781282 |
dewey-full | 515/.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.352 |
dewey-search | 515/.352 |
dewey-sort | 3515 3352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05611nmm a2200649zcb4500</leader><controlfield tag="001">BV043781282</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110295318</subfield><subfield code="9">3-11-029531-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110295313</subfield><subfield code="9">978-3-11-029531-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110293616</subfield><subfield code="9">978-3-11-029361-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110293617</subfield><subfield code="9">3-11-029361-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn880737219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)880737219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043781282</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graef, John R.</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impulsive differential inclusions</subfield><subfield code="b">a fixed point approach</subfield><subfield code="c">John R. Graef, Johnny Henderson, Abdelghani Ouahab</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">Walter de Gruyter GmbH</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 400 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">20</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Notations; 1 Introduction and Motivations; 1.1 Introduction; 1.2 Motivational Models; 1.2.1 Kruger-Thiemer Model; 1.2.2 Lotka-Volterra Model; 1.2.3 Pulse Vaccination Model; 1.2.4 Management Model; 1.2.5 Some Examples in Economics and Biomathematics; 2 Preliminaries; 2.1 Some Definitions; 2.2 Some Properties in Frchet Spaces; 2.3 Some Properties of Set-valued Maps; 2.3.1 Hausdorff Metric Topology; 2.3.2 Vietoris Topology; 2.3.3 Continuity Concepts and Their Relations; 2.3.4 Selection Functions and Selection Theorems; 2.3.5 Hausdorff Continuity; 2.3.6 Measurable Multifunctions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.7 Decomposable Selection2.4 Fixed Point Theorems; 2.5 Measures of Noncompactness: MNC; 2.6 Semigroups; 2.6.1 C0-semigroups; 2.6.2 Integrated Semigroups; 2.6.3 Examples; 2.7 Extrapolation Spaces; 3 FDEs with Infinite Delay; 3.1 First Order FDEs; 3.1.1 Examples of Phase Spaces; 3.1.2 Existence and Uniqueness on Compact Intervals; 3.1.3 An Example; 3.2 FDEs with Multiple Delays; 3.2.1 Existence and Uniqueness Result on a Compact Interval; 3.2.2 Global Existence and Uniqueness Result; 3.3 Stability; 3.3.1 Stability Result; 3.4 Second Order Impulsive FDEs</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.1 Existence and Uniqueness Results3.5 Global Existence and Uniqueness Result; 3.5.1 Uniqueness Result; 3.5.2 Example; 3.5.3 Stability; 4 Boundary Value Problems on Infinite Intervals; 4.1 Introduction; 4.1.1 Existence Result; 4.1.2 Uniqueness Result; 4.1.3 Example; 5 Differential Inclusions; 5.1 Introduction; 5.1.1 Filippov's Theorem; 5.1.2 Relaxation Theorem; 5.2 Functional Differential Inclusions; 5.2.1 Filippov's Theorem for FDIs; 5.2.2 Some Properties of Solution Sets; 5.3 Upper Semicontinuity without Convexity; 5.3.1 Nonconvex Theorem and Upper Semicontinuity; 5.3.2 An Application</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 Inclusions with Dissipative Right Hand Side5.4.1 Existence and Uniqueness Result; 5.5 Directionally Continuous Selection and IDIs; 5.5.1 Directional Continuity; 6 Differential Inclusions with Infinite Delay; 6.1 Existence Results; 6.2 Boundary Differential Inclusions; 7 Impulsive FDEs with Variable Times; 7.1 Introduction; 7.1.1 Existence Results; 7.1.2 Neutral Functional Differential Equations; 7.2 Impulsive Hyperbolic Differential Inclusions with Infinite Delay; 7.3 Existence Results; 7.3.1 Phase Spaces; 7.3.2 The Nonconvex Case; 8 Neutral Differential Inclusions; 8.1 Filippov's Theorem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, etc. The questions of existence and stability of solutions for different classes of initial values problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems and relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simple</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prediction theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield><subfield code="a">Boundary value problems</subfield><subfield code="a">Differential equations</subfield><subfield code="a">Prediction theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialinklusion</subfield><subfield code="0">(DE-588)4149777-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Impulsdifferentialgleichung</subfield><subfield code="0">(DE-588)4339336-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fixpunkt-Methode</subfield><subfield code="0">(DE-588)4139170-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Impulsdifferentialgleichung</subfield><subfield code="0">(DE-588)4339336-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialinklusion</subfield><subfield code="0">(DE-588)4149777-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fixpunkt-Methode</subfield><subfield code="0">(DE-588)4139170-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henderson, Johnny</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ouahab, Abdelghani</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Graef, John R</subfield><subfield code="t">, 1942-. Impulsive differential inclusions</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029192342</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641778</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641778</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043781282 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:34:56Z |
institution | BVB |
isbn | 3110295318 9783110295313 9783110293616 3110293617 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029192342 |
oclc_num | 880737219 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (x, 400 pages) illustrations |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Walter de Gruyter GmbH |
record_format | marc |
series2 | De Gruyter series in nonlinear analysis and applications |
spelling | Graef, John R. 1942- Verfasser aut Impulsive differential inclusions a fixed point approach John R. Graef, Johnny Henderson, Abdelghani Ouahab Berlin ; Boston Walter de Gruyter GmbH [2013] 1 online resource (x, 400 pages) illustrations txt rdacontent c rdamedia cr rdacarrier De Gruyter series in nonlinear analysis and applications 20 Print version record Notations; 1 Introduction and Motivations; 1.1 Introduction; 1.2 Motivational Models; 1.2.1 Kruger-Thiemer Model; 1.2.2 Lotka-Volterra Model; 1.2.3 Pulse Vaccination Model; 1.2.4 Management Model; 1.2.5 Some Examples in Economics and Biomathematics; 2 Preliminaries; 2.1 Some Definitions; 2.2 Some Properties in Frchet Spaces; 2.3 Some Properties of Set-valued Maps; 2.3.1 Hausdorff Metric Topology; 2.3.2 Vietoris Topology; 2.3.3 Continuity Concepts and Their Relations; 2.3.4 Selection Functions and Selection Theorems; 2.3.5 Hausdorff Continuity; 2.3.6 Measurable Multifunctions 2.3.7 Decomposable Selection2.4 Fixed Point Theorems; 2.5 Measures of Noncompactness: MNC; 2.6 Semigroups; 2.6.1 C0-semigroups; 2.6.2 Integrated Semigroups; 2.6.3 Examples; 2.7 Extrapolation Spaces; 3 FDEs with Infinite Delay; 3.1 First Order FDEs; 3.1.1 Examples of Phase Spaces; 3.1.2 Existence and Uniqueness on Compact Intervals; 3.1.3 An Example; 3.2 FDEs with Multiple Delays; 3.2.1 Existence and Uniqueness Result on a Compact Interval; 3.2.2 Global Existence and Uniqueness Result; 3.3 Stability; 3.3.1 Stability Result; 3.4 Second Order Impulsive FDEs 3.4.1 Existence and Uniqueness Results3.5 Global Existence and Uniqueness Result; 3.5.1 Uniqueness Result; 3.5.2 Example; 3.5.3 Stability; 4 Boundary Value Problems on Infinite Intervals; 4.1 Introduction; 4.1.1 Existence Result; 4.1.2 Uniqueness Result; 4.1.3 Example; 5 Differential Inclusions; 5.1 Introduction; 5.1.1 Filippov's Theorem; 5.1.2 Relaxation Theorem; 5.2 Functional Differential Inclusions; 5.2.1 Filippov's Theorem for FDIs; 5.2.2 Some Properties of Solution Sets; 5.3 Upper Semicontinuity without Convexity; 5.3.1 Nonconvex Theorem and Upper Semicontinuity; 5.3.2 An Application 5.4 Inclusions with Dissipative Right Hand Side5.4.1 Existence and Uniqueness Result; 5.5 Directionally Continuous Selection and IDIs; 5.5.1 Directional Continuity; 6 Differential Inclusions with Infinite Delay; 6.1 Existence Results; 6.2 Boundary Differential Inclusions; 7 Impulsive FDEs with Variable Times; 7.1 Introduction; 7.1.1 Existence Results; 7.1.2 Neutral Functional Differential Equations; 7.2 Impulsive Hyperbolic Differential Inclusions with Infinite Delay; 7.3 Existence Results; 7.3.1 Phase Spaces; 7.3.2 The Nonconvex Case; 8 Neutral Differential Inclusions; 8.1 Filippov's Theorem Impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, etc. The questions of existence and stability of solutions for different classes of initial values problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems and relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simple Boundary value problems fast Differential equations fast Prediction theory fast Stochastic processes fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Stochastic processes Boundary value problems Differential equations Prediction theory Differentialinklusion (DE-588)4149777-6 gnd rswk-swf Impulsdifferentialgleichung (DE-588)4339336-6 gnd rswk-swf Fixpunkt-Methode (DE-588)4139170-6 gnd rswk-swf Impulsdifferentialgleichung (DE-588)4339336-6 s Differentialinklusion (DE-588)4149777-6 s Fixpunkt-Methode (DE-588)4139170-6 s 1\p DE-604 Henderson, Johnny Sonstige oth Ouahab, Abdelghani Sonstige oth Erscheint auch als Druck-Ausgabe Graef, John R , 1942-. Impulsive differential inclusions 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Graef, John R. 1942- Impulsive differential inclusions a fixed point approach Notations; 1 Introduction and Motivations; 1.1 Introduction; 1.2 Motivational Models; 1.2.1 Kruger-Thiemer Model; 1.2.2 Lotka-Volterra Model; 1.2.3 Pulse Vaccination Model; 1.2.4 Management Model; 1.2.5 Some Examples in Economics and Biomathematics; 2 Preliminaries; 2.1 Some Definitions; 2.2 Some Properties in Frchet Spaces; 2.3 Some Properties of Set-valued Maps; 2.3.1 Hausdorff Metric Topology; 2.3.2 Vietoris Topology; 2.3.3 Continuity Concepts and Their Relations; 2.3.4 Selection Functions and Selection Theorems; 2.3.5 Hausdorff Continuity; 2.3.6 Measurable Multifunctions 2.3.7 Decomposable Selection2.4 Fixed Point Theorems; 2.5 Measures of Noncompactness: MNC; 2.6 Semigroups; 2.6.1 C0-semigroups; 2.6.2 Integrated Semigroups; 2.6.3 Examples; 2.7 Extrapolation Spaces; 3 FDEs with Infinite Delay; 3.1 First Order FDEs; 3.1.1 Examples of Phase Spaces; 3.1.2 Existence and Uniqueness on Compact Intervals; 3.1.3 An Example; 3.2 FDEs with Multiple Delays; 3.2.1 Existence and Uniqueness Result on a Compact Interval; 3.2.2 Global Existence and Uniqueness Result; 3.3 Stability; 3.3.1 Stability Result; 3.4 Second Order Impulsive FDEs 3.4.1 Existence and Uniqueness Results3.5 Global Existence and Uniqueness Result; 3.5.1 Uniqueness Result; 3.5.2 Example; 3.5.3 Stability; 4 Boundary Value Problems on Infinite Intervals; 4.1 Introduction; 4.1.1 Existence Result; 4.1.2 Uniqueness Result; 4.1.3 Example; 5 Differential Inclusions; 5.1 Introduction; 5.1.1 Filippov's Theorem; 5.1.2 Relaxation Theorem; 5.2 Functional Differential Inclusions; 5.2.1 Filippov's Theorem for FDIs; 5.2.2 Some Properties of Solution Sets; 5.3 Upper Semicontinuity without Convexity; 5.3.1 Nonconvex Theorem and Upper Semicontinuity; 5.3.2 An Application 5.4 Inclusions with Dissipative Right Hand Side5.4.1 Existence and Uniqueness Result; 5.5 Directionally Continuous Selection and IDIs; 5.5.1 Directional Continuity; 6 Differential Inclusions with Infinite Delay; 6.1 Existence Results; 6.2 Boundary Differential Inclusions; 7 Impulsive FDEs with Variable Times; 7.1 Introduction; 7.1.1 Existence Results; 7.1.2 Neutral Functional Differential Equations; 7.2 Impulsive Hyperbolic Differential Inclusions with Infinite Delay; 7.3 Existence Results; 7.3.1 Phase Spaces; 7.3.2 The Nonconvex Case; 8 Neutral Differential Inclusions; 8.1 Filippov's Theorem Impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, etc. The questions of existence and stability of solutions for different classes of initial values problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems and relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simple Boundary value problems fast Differential equations fast Prediction theory fast Stochastic processes fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Stochastic processes Boundary value problems Differential equations Prediction theory Differentialinklusion (DE-588)4149777-6 gnd Impulsdifferentialgleichung (DE-588)4339336-6 gnd Fixpunkt-Methode (DE-588)4139170-6 gnd |
subject_GND | (DE-588)4149777-6 (DE-588)4339336-6 (DE-588)4139170-6 |
title | Impulsive differential inclusions a fixed point approach |
title_auth | Impulsive differential inclusions a fixed point approach |
title_exact_search | Impulsive differential inclusions a fixed point approach |
title_full | Impulsive differential inclusions a fixed point approach John R. Graef, Johnny Henderson, Abdelghani Ouahab |
title_fullStr | Impulsive differential inclusions a fixed point approach John R. Graef, Johnny Henderson, Abdelghani Ouahab |
title_full_unstemmed | Impulsive differential inclusions a fixed point approach John R. Graef, Johnny Henderson, Abdelghani Ouahab |
title_short | Impulsive differential inclusions |
title_sort | impulsive differential inclusions a fixed point approach |
title_sub | a fixed point approach |
topic | Boundary value problems fast Differential equations fast Prediction theory fast Stochastic processes fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Stochastic processes Boundary value problems Differential equations Prediction theory Differentialinklusion (DE-588)4149777-6 gnd Impulsdifferentialgleichung (DE-588)4339336-6 gnd Fixpunkt-Methode (DE-588)4139170-6 gnd |
topic_facet | Boundary value problems Differential equations Prediction theory Stochastic processes MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Stochastic processes Boundary value problems Differential equations Prediction theory Differentialinklusion Impulsdifferentialgleichung Fixpunkt-Methode |
work_keys_str_mv | AT graefjohnr impulsivedifferentialinclusionsafixedpointapproach AT hendersonjohnny impulsivedifferentialinclusionsafixedpointapproach AT ouahababdelghani impulsivedifferentialinclusionsafixedpointapproach |