Affine Ebenen: eine konstruktive Algebraisierung desarguesscher Ebenen
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
München [Germany]
Oldenbourg Wissenschaftsverlag
2014
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Online resource; title from PDF title page (ebrary, viewed May 2, 2014) |
Beschreibung: | 1 online resource (346 pages) |
ISBN: | 9783486747102 348674710X 9783486721379 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043781244 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2014 |||| o||u| ||||||ger d | ||
020 | |a 9783486747102 |9 978-3-486-74710-2 | ||
020 | |a 348674710X |9 3-486-74710-X | ||
020 | |a 9783486721379 |9 978-3-486-72137-9 | ||
035 | |a (ZDB-4-EBA)ocn880458951 | ||
035 | |a (OCoLC)880458951 | ||
035 | |a (DE-599)BVBBV043781244 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a ger | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.13 |2 23 | |
100 | 1 | |a Bergmann, Artur |e Verfasser |4 aut | |
245 | 1 | 0 | |a Affine Ebenen |b eine konstruktive Algebraisierung desarguesscher Ebenen |c von Prof. em. Dr. Artur Bergmann, Prof. a. D. Dr. Erich Baumgartner |
264 | 1 | |a München [Germany] |b Oldenbourg Wissenschaftsverlag |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (346 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Online resource; title from PDF title page (ebrary, viewed May 2, 2014) | ||
505 | 8 | |a Einleitung; 1 Affine Inzidenzebenen; 1.1 Definition affiner Inzidenzebenen; 1.2 Einfache Folgerungen; 1.3 Kollineationen; 1.4 Punktabbildung einer Kollineation; 1.5 Dilatationen; 1.6 Schließungssätze; 1.6.1 Der große und der kleine Satz von Desargues; 1.6.2 Der große und der kleine Satz von Pappos; 1.6.3 Der Schließungssatz (D*); 1.6.4 Der große und der kleine Scherensatz; 1.6.5 Zusammenhange zwischen den Schließungssätzen; 1.6.6 (D)-Ebenen u. ä; 2 Parallelverschiebungen in (d)-Ebenen; 2.1 Definition von Parallelogrammen; 2.2 Zur Definition uneigentlicher Parallelogramme | |
505 | 8 | |a 2.3 Eigenschaften von Parallelogrammen2.4 Definition von Parallelverschiebungen; 2.5 Einige Eigenschaften der Parallelverschiebungen; 2.6 Die abelsche Gruppe der Parallelverschiebungen; 2.7 Parallelverschiebungen respektieren die Kollinearitat; 2.8 Parallelverschiebungen als Kollineationen; 2.9 Parallelverschiebungen als Dilatationen; 2.10 Fixpunkte, Fixgeraden, Spuren, Richtung von Parallelverschiebungen; 2.11 Die Untergruppen Tg von T; 2.12 Zusammenhang zwischen T und P, sowie zwischen Tg und Pg; 2.13 Konjugationen in Gruppen; 2.14 Konjugation von Parallelverschiebungen mit Kollineationen | |
505 | 8 | |a 2.15 Algebraische Struktur der Gruppe (T, o)2.16 Zusammenhang zwischen Parallelverschiebungen und Translationen; 2.17 Operieren der Translationsgruppe T auf der Punktmenge P; Ergänzungen zu Kapitel 2; 2.18 Parallelgleichheit; Vektoren als Äquivalenzklassen; 2.19 Ortsvektoren; 2.20 Ein geometrischer Beweis von Eigenschaft 2.5 (2); 3 Streckungen in (D)-Ebenen; 3.1 Definition von Z-Trapezen; 3.2 Zur Definition von uneigentlichen Z-Trapezen; 3.3 Eigenschaften von Z-Trapezen; 3.4 Definition von Streckungen; 3.5 Einige Eigenschaften der Streckungen; 3.6 Die Gruppe der Streckungen mit Zentrum Z. | |
505 | 8 | |a 3.7 Streckungen erhalten die Kollinearität3.8 Streckungen als Kollineationen; 3.9 Streckungen als Dilatationen; 3.10 Fixpunkte, Fixgeraden, Spuren von Streckungen; 3.11 Zusammenhang in (D)-Ebenen zwischen der Menge aller Z-Streckungen und der Menge aller Punkte einer Geraden durch Z; 3.12 Konjugation von Streckungen mit Kollineationen; 3.13 Isomorphie aller Streckungsgruppen; 3.14 Konjugation von Parallelverschiebungen mit Streckungen; 3.15 Zusammenhang zwischen Streckungen und Dilatationen mit einem Fixpunkt | |
505 | 8 | |a 3.16 Die Streckungsgruppe mit Zentrum Z operiert in (D)-Ebenen auf jeder Geraden durch Z3.17 Z-Streckungsgleichheit; 3.18 Ein geometrischer Beweis von Satz 3.14; 3.19 (D) ist eine notwendige Voraussetzung fär Satz 3.11; 4 Schiefkörper der spurtreuen Endomorphismen von T; 4.1 Zwei Ergebnisse aus der Linearen Algebra; 4.1.1 Der Endomorphismenring einer abelschen Gruppe; 4.1.2 Abelsche Gruppen als Linksmoduln äber ihrem Endomorphismenring; 4.2 Anwendung auf die abelsche Gruppe (T, o) der Parallelverschiebungen; 4.3 Spurtreue Endomorphismen von (T, o) | |
505 | 8 | |a Zu jeder affinen Inzidenzebene, in welcher der große Satz von Desargues gilt (kurz: (D)-Ebene), wird mit Hilfe von Translationen und Streckungen ein zweidimensionaler Vektorraum über einem Schiefkörper hergeleitet. Anders als in der bisherigen Literatur werden diese Abbildungen nicht axiomatisch, sondern konstruktiv eingeführt. Dieser Weg ist anschaulich und verdeutlicht den geometrischen Hintergrund der algebraischen Strukturen. Außerdem sichert er von Anfang an die Existenz hinreichend vieler solcher Abbildungen | |
650 | 4 | |a Combinatorial geometry | |
650 | 4 | |a Combinatorics / Designs and configurations / Finite geometries | |
650 | 4 | |a Geometry / Finite geometry and special incidence structures / Affine and projective planes | |
650 | 4 | |a Number theory / Algebraic number theory: global fields / Algebraic numbers, algebraic rings of integers | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Combinatorial geometry |a Number theory |x Data processing |a Geometry, Affine | |
650 | 0 | 7 | |a Konstruktive Mathematik |0 (DE-588)4165105-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Affine Ebene |0 (DE-588)4141564-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Affine Ebene |0 (DE-588)4141564-4 |D s |
689 | 0 | 1 | |a Konstruktive Mathematik |0 (DE-588)4165105-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Baumgartner, Erich |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Bergmann, Artur, author |t Affine Ebenen |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029192304 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=754019 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=754019 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176611561439232 |
---|---|
any_adam_object | |
author | Bergmann, Artur |
author_facet | Bergmann, Artur |
author_role | aut |
author_sort | Bergmann, Artur |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV043781244 |
collection | ZDB-4-EBA |
contents | Einleitung; 1 Affine Inzidenzebenen; 1.1 Definition affiner Inzidenzebenen; 1.2 Einfache Folgerungen; 1.3 Kollineationen; 1.4 Punktabbildung einer Kollineation; 1.5 Dilatationen; 1.6 Schließungssätze; 1.6.1 Der große und der kleine Satz von Desargues; 1.6.2 Der große und der kleine Satz von Pappos; 1.6.3 Der Schließungssatz (D*); 1.6.4 Der große und der kleine Scherensatz; 1.6.5 Zusammenhange zwischen den Schließungssätzen; 1.6.6 (D)-Ebenen u. ä; 2 Parallelverschiebungen in (d)-Ebenen; 2.1 Definition von Parallelogrammen; 2.2 Zur Definition uneigentlicher Parallelogramme 2.3 Eigenschaften von Parallelogrammen2.4 Definition von Parallelverschiebungen; 2.5 Einige Eigenschaften der Parallelverschiebungen; 2.6 Die abelsche Gruppe der Parallelverschiebungen; 2.7 Parallelverschiebungen respektieren die Kollinearitat; 2.8 Parallelverschiebungen als Kollineationen; 2.9 Parallelverschiebungen als Dilatationen; 2.10 Fixpunkte, Fixgeraden, Spuren, Richtung von Parallelverschiebungen; 2.11 Die Untergruppen Tg von T; 2.12 Zusammenhang zwischen T und P, sowie zwischen Tg und Pg; 2.13 Konjugationen in Gruppen; 2.14 Konjugation von Parallelverschiebungen mit Kollineationen 2.15 Algebraische Struktur der Gruppe (T, o)2.16 Zusammenhang zwischen Parallelverschiebungen und Translationen; 2.17 Operieren der Translationsgruppe T auf der Punktmenge P; Ergänzungen zu Kapitel 2; 2.18 Parallelgleichheit; Vektoren als Äquivalenzklassen; 2.19 Ortsvektoren; 2.20 Ein geometrischer Beweis von Eigenschaft 2.5 (2); 3 Streckungen in (D)-Ebenen; 3.1 Definition von Z-Trapezen; 3.2 Zur Definition von uneigentlichen Z-Trapezen; 3.3 Eigenschaften von Z-Trapezen; 3.4 Definition von Streckungen; 3.5 Einige Eigenschaften der Streckungen; 3.6 Die Gruppe der Streckungen mit Zentrum Z. 3.7 Streckungen erhalten die Kollinearität3.8 Streckungen als Kollineationen; 3.9 Streckungen als Dilatationen; 3.10 Fixpunkte, Fixgeraden, Spuren von Streckungen; 3.11 Zusammenhang in (D)-Ebenen zwischen der Menge aller Z-Streckungen und der Menge aller Punkte einer Geraden durch Z; 3.12 Konjugation von Streckungen mit Kollineationen; 3.13 Isomorphie aller Streckungsgruppen; 3.14 Konjugation von Parallelverschiebungen mit Streckungen; 3.15 Zusammenhang zwischen Streckungen und Dilatationen mit einem Fixpunkt 3.16 Die Streckungsgruppe mit Zentrum Z operiert in (D)-Ebenen auf jeder Geraden durch Z3.17 Z-Streckungsgleichheit; 3.18 Ein geometrischer Beweis von Satz 3.14; 3.19 (D) ist eine notwendige Voraussetzung fär Satz 3.11; 4 Schiefkörper der spurtreuen Endomorphismen von T; 4.1 Zwei Ergebnisse aus der Linearen Algebra; 4.1.1 Der Endomorphismenring einer abelschen Gruppe; 4.1.2 Abelsche Gruppen als Linksmoduln äber ihrem Endomorphismenring; 4.2 Anwendung auf die abelsche Gruppe (T, o) der Parallelverschiebungen; 4.3 Spurtreue Endomorphismen von (T, o) Zu jeder affinen Inzidenzebene, in welcher der große Satz von Desargues gilt (kurz: (D)-Ebene), wird mit Hilfe von Translationen und Streckungen ein zweidimensionaler Vektorraum über einem Schiefkörper hergeleitet. Anders als in der bisherigen Literatur werden diese Abbildungen nicht axiomatisch, sondern konstruktiv eingeführt. Dieser Weg ist anschaulich und verdeutlicht den geometrischen Hintergrund der algebraischen Strukturen. Außerdem sichert er von Anfang an die Existenz hinreichend vieler solcher Abbildungen |
ctrlnum | (ZDB-4-EBA)ocn880458951 (OCoLC)880458951 (DE-599)BVBBV043781244 |
dewey-full | 516.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.13 |
dewey-search | 516.13 |
dewey-sort | 3516.13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05955nmm a2200613zc 4500</leader><controlfield tag="001">BV043781244</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2014 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783486747102</subfield><subfield code="9">978-3-486-74710-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">348674710X</subfield><subfield code="9">3-486-74710-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783486721379</subfield><subfield code="9">978-3-486-72137-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn880458951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)880458951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043781244</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.13</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bergmann, Artur</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine Ebenen</subfield><subfield code="b">eine konstruktive Algebraisierung desarguesscher Ebenen</subfield><subfield code="c">von Prof. em. Dr. Artur Bergmann, Prof. a. D. Dr. Erich Baumgartner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München [Germany]</subfield><subfield code="b">Oldenbourg Wissenschaftsverlag</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (346 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from PDF title page (ebrary, viewed May 2, 2014)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Einleitung; 1 Affine Inzidenzebenen; 1.1 Definition affiner Inzidenzebenen; 1.2 Einfache Folgerungen; 1.3 Kollineationen; 1.4 Punktabbildung einer Kollineation; 1.5 Dilatationen; 1.6 Schließungssätze; 1.6.1 Der große und der kleine Satz von Desargues; 1.6.2 Der große und der kleine Satz von Pappos; 1.6.3 Der Schließungssatz (D*); 1.6.4 Der große und der kleine Scherensatz; 1.6.5 Zusammenhange zwischen den Schließungssätzen; 1.6.6 (D)-Ebenen u. ä; 2 Parallelverschiebungen in (d)-Ebenen; 2.1 Definition von Parallelogrammen; 2.2 Zur Definition uneigentlicher Parallelogramme</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Eigenschaften von Parallelogrammen2.4 Definition von Parallelverschiebungen; 2.5 Einige Eigenschaften der Parallelverschiebungen; 2.6 Die abelsche Gruppe der Parallelverschiebungen; 2.7 Parallelverschiebungen respektieren die Kollinearitat; 2.8 Parallelverschiebungen als Kollineationen; 2.9 Parallelverschiebungen als Dilatationen; 2.10 Fixpunkte, Fixgeraden, Spuren, Richtung von Parallelverschiebungen; 2.11 Die Untergruppen Tg von T; 2.12 Zusammenhang zwischen T und P, sowie zwischen Tg und Pg; 2.13 Konjugationen in Gruppen; 2.14 Konjugation von Parallelverschiebungen mit Kollineationen</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.15 Algebraische Struktur der Gruppe (T, o)2.16 Zusammenhang zwischen Parallelverschiebungen und Translationen; 2.17 Operieren der Translationsgruppe T auf der Punktmenge P; Ergänzungen zu Kapitel 2; 2.18 Parallelgleichheit; Vektoren als Äquivalenzklassen; 2.19 Ortsvektoren; 2.20 Ein geometrischer Beweis von Eigenschaft 2.5 (2); 3 Streckungen in (D)-Ebenen; 3.1 Definition von Z-Trapezen; 3.2 Zur Definition von uneigentlichen Z-Trapezen; 3.3 Eigenschaften von Z-Trapezen; 3.4 Definition von Streckungen; 3.5 Einige Eigenschaften der Streckungen; 3.6 Die Gruppe der Streckungen mit Zentrum Z.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7 Streckungen erhalten die Kollinearität3.8 Streckungen als Kollineationen; 3.9 Streckungen als Dilatationen; 3.10 Fixpunkte, Fixgeraden, Spuren von Streckungen; 3.11 Zusammenhang in (D)-Ebenen zwischen der Menge aller Z-Streckungen und der Menge aller Punkte einer Geraden durch Z; 3.12 Konjugation von Streckungen mit Kollineationen; 3.13 Isomorphie aller Streckungsgruppen; 3.14 Konjugation von Parallelverschiebungen mit Streckungen; 3.15 Zusammenhang zwischen Streckungen und Dilatationen mit einem Fixpunkt</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.16 Die Streckungsgruppe mit Zentrum Z operiert in (D)-Ebenen auf jeder Geraden durch Z3.17 Z-Streckungsgleichheit; 3.18 Ein geometrischer Beweis von Satz 3.14; 3.19 (D) ist eine notwendige Voraussetzung fär Satz 3.11; 4 Schiefkörper der spurtreuen Endomorphismen von T; 4.1 Zwei Ergebnisse aus der Linearen Algebra; 4.1.1 Der Endomorphismenring einer abelschen Gruppe; 4.1.2 Abelsche Gruppen als Linksmoduln äber ihrem Endomorphismenring; 4.2 Anwendung auf die abelsche Gruppe (T, o) der Parallelverschiebungen; 4.3 Spurtreue Endomorphismen von (T, o)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Zu jeder affinen Inzidenzebene, in welcher der große Satz von Desargues gilt (kurz: (D)-Ebene), wird mit Hilfe von Translationen und Streckungen ein zweidimensionaler Vektorraum über einem Schiefkörper hergeleitet. Anders als in der bisherigen Literatur werden diese Abbildungen nicht axiomatisch, sondern konstruktiv eingeführt. Dieser Weg ist anschaulich und verdeutlicht den geometrischen Hintergrund der algebraischen Strukturen. Außerdem sichert er von Anfang an die Existenz hinreichend vieler solcher Abbildungen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics / Designs and configurations / Finite geometries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry / Finite geometry and special incidence structures / Affine and projective planes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory / Algebraic number theory: global fields / Algebraic numbers, algebraic rings of integers</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial geometry</subfield><subfield code="a">Number theory</subfield><subfield code="x">Data processing</subfield><subfield code="a">Geometry, Affine</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konstruktive Mathematik</subfield><subfield code="0">(DE-588)4165105-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Affine Ebene</subfield><subfield code="0">(DE-588)4141564-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Affine Ebene</subfield><subfield code="0">(DE-588)4141564-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konstruktive Mathematik</subfield><subfield code="0">(DE-588)4165105-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baumgartner, Erich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Bergmann, Artur, author</subfield><subfield code="t">Affine Ebenen</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029192304</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=754019</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=754019</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043781244 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:56Z |
institution | BVB |
isbn | 9783486747102 348674710X 9783486721379 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029192304 |
oclc_num | 880458951 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (346 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Oldenbourg Wissenschaftsverlag |
record_format | marc |
spelling | Bergmann, Artur Verfasser aut Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen von Prof. em. Dr. Artur Bergmann, Prof. a. D. Dr. Erich Baumgartner München [Germany] Oldenbourg Wissenschaftsverlag 2014 © 2014 1 online resource (346 pages) txt rdacontent c rdamedia cr rdacarrier Online resource; title from PDF title page (ebrary, viewed May 2, 2014) Einleitung; 1 Affine Inzidenzebenen; 1.1 Definition affiner Inzidenzebenen; 1.2 Einfache Folgerungen; 1.3 Kollineationen; 1.4 Punktabbildung einer Kollineation; 1.5 Dilatationen; 1.6 Schließungssätze; 1.6.1 Der große und der kleine Satz von Desargues; 1.6.2 Der große und der kleine Satz von Pappos; 1.6.3 Der Schließungssatz (D*); 1.6.4 Der große und der kleine Scherensatz; 1.6.5 Zusammenhange zwischen den Schließungssätzen; 1.6.6 (D)-Ebenen u. ä; 2 Parallelverschiebungen in (d)-Ebenen; 2.1 Definition von Parallelogrammen; 2.2 Zur Definition uneigentlicher Parallelogramme 2.3 Eigenschaften von Parallelogrammen2.4 Definition von Parallelverschiebungen; 2.5 Einige Eigenschaften der Parallelverschiebungen; 2.6 Die abelsche Gruppe der Parallelverschiebungen; 2.7 Parallelverschiebungen respektieren die Kollinearitat; 2.8 Parallelverschiebungen als Kollineationen; 2.9 Parallelverschiebungen als Dilatationen; 2.10 Fixpunkte, Fixgeraden, Spuren, Richtung von Parallelverschiebungen; 2.11 Die Untergruppen Tg von T; 2.12 Zusammenhang zwischen T und P, sowie zwischen Tg und Pg; 2.13 Konjugationen in Gruppen; 2.14 Konjugation von Parallelverschiebungen mit Kollineationen 2.15 Algebraische Struktur der Gruppe (T, o)2.16 Zusammenhang zwischen Parallelverschiebungen und Translationen; 2.17 Operieren der Translationsgruppe T auf der Punktmenge P; Ergänzungen zu Kapitel 2; 2.18 Parallelgleichheit; Vektoren als Äquivalenzklassen; 2.19 Ortsvektoren; 2.20 Ein geometrischer Beweis von Eigenschaft 2.5 (2); 3 Streckungen in (D)-Ebenen; 3.1 Definition von Z-Trapezen; 3.2 Zur Definition von uneigentlichen Z-Trapezen; 3.3 Eigenschaften von Z-Trapezen; 3.4 Definition von Streckungen; 3.5 Einige Eigenschaften der Streckungen; 3.6 Die Gruppe der Streckungen mit Zentrum Z. 3.7 Streckungen erhalten die Kollinearität3.8 Streckungen als Kollineationen; 3.9 Streckungen als Dilatationen; 3.10 Fixpunkte, Fixgeraden, Spuren von Streckungen; 3.11 Zusammenhang in (D)-Ebenen zwischen der Menge aller Z-Streckungen und der Menge aller Punkte einer Geraden durch Z; 3.12 Konjugation von Streckungen mit Kollineationen; 3.13 Isomorphie aller Streckungsgruppen; 3.14 Konjugation von Parallelverschiebungen mit Streckungen; 3.15 Zusammenhang zwischen Streckungen und Dilatationen mit einem Fixpunkt 3.16 Die Streckungsgruppe mit Zentrum Z operiert in (D)-Ebenen auf jeder Geraden durch Z3.17 Z-Streckungsgleichheit; 3.18 Ein geometrischer Beweis von Satz 3.14; 3.19 (D) ist eine notwendige Voraussetzung fär Satz 3.11; 4 Schiefkörper der spurtreuen Endomorphismen von T; 4.1 Zwei Ergebnisse aus der Linearen Algebra; 4.1.1 Der Endomorphismenring einer abelschen Gruppe; 4.1.2 Abelsche Gruppen als Linksmoduln äber ihrem Endomorphismenring; 4.2 Anwendung auf die abelsche Gruppe (T, o) der Parallelverschiebungen; 4.3 Spurtreue Endomorphismen von (T, o) Zu jeder affinen Inzidenzebene, in welcher der große Satz von Desargues gilt (kurz: (D)-Ebene), wird mit Hilfe von Translationen und Streckungen ein zweidimensionaler Vektorraum über einem Schiefkörper hergeleitet. Anders als in der bisherigen Literatur werden diese Abbildungen nicht axiomatisch, sondern konstruktiv eingeführt. Dieser Weg ist anschaulich und verdeutlicht den geometrischen Hintergrund der algebraischen Strukturen. Außerdem sichert er von Anfang an die Existenz hinreichend vieler solcher Abbildungen Combinatorial geometry Combinatorics / Designs and configurations / Finite geometries Geometry / Finite geometry and special incidence structures / Affine and projective planes Number theory / Algebraic number theory: global fields / Algebraic numbers, algebraic rings of integers MATHEMATICS / Geometry / General bisacsh Datenverarbeitung Combinatorial geometry Number theory Data processing Geometry, Affine Konstruktive Mathematik (DE-588)4165105-4 gnd rswk-swf Affine Ebene (DE-588)4141564-4 gnd rswk-swf Affine Ebene (DE-588)4141564-4 s Konstruktive Mathematik (DE-588)4165105-4 s 1\p DE-604 Baumgartner, Erich Sonstige oth Erscheint auch als Druck-Ausgabe Bergmann, Artur, author Affine Ebenen 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bergmann, Artur Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen Einleitung; 1 Affine Inzidenzebenen; 1.1 Definition affiner Inzidenzebenen; 1.2 Einfache Folgerungen; 1.3 Kollineationen; 1.4 Punktabbildung einer Kollineation; 1.5 Dilatationen; 1.6 Schließungssätze; 1.6.1 Der große und der kleine Satz von Desargues; 1.6.2 Der große und der kleine Satz von Pappos; 1.6.3 Der Schließungssatz (D*); 1.6.4 Der große und der kleine Scherensatz; 1.6.5 Zusammenhange zwischen den Schließungssätzen; 1.6.6 (D)-Ebenen u. ä; 2 Parallelverschiebungen in (d)-Ebenen; 2.1 Definition von Parallelogrammen; 2.2 Zur Definition uneigentlicher Parallelogramme 2.3 Eigenschaften von Parallelogrammen2.4 Definition von Parallelverschiebungen; 2.5 Einige Eigenschaften der Parallelverschiebungen; 2.6 Die abelsche Gruppe der Parallelverschiebungen; 2.7 Parallelverschiebungen respektieren die Kollinearitat; 2.8 Parallelverschiebungen als Kollineationen; 2.9 Parallelverschiebungen als Dilatationen; 2.10 Fixpunkte, Fixgeraden, Spuren, Richtung von Parallelverschiebungen; 2.11 Die Untergruppen Tg von T; 2.12 Zusammenhang zwischen T und P, sowie zwischen Tg und Pg; 2.13 Konjugationen in Gruppen; 2.14 Konjugation von Parallelverschiebungen mit Kollineationen 2.15 Algebraische Struktur der Gruppe (T, o)2.16 Zusammenhang zwischen Parallelverschiebungen und Translationen; 2.17 Operieren der Translationsgruppe T auf der Punktmenge P; Ergänzungen zu Kapitel 2; 2.18 Parallelgleichheit; Vektoren als Äquivalenzklassen; 2.19 Ortsvektoren; 2.20 Ein geometrischer Beweis von Eigenschaft 2.5 (2); 3 Streckungen in (D)-Ebenen; 3.1 Definition von Z-Trapezen; 3.2 Zur Definition von uneigentlichen Z-Trapezen; 3.3 Eigenschaften von Z-Trapezen; 3.4 Definition von Streckungen; 3.5 Einige Eigenschaften der Streckungen; 3.6 Die Gruppe der Streckungen mit Zentrum Z. 3.7 Streckungen erhalten die Kollinearität3.8 Streckungen als Kollineationen; 3.9 Streckungen als Dilatationen; 3.10 Fixpunkte, Fixgeraden, Spuren von Streckungen; 3.11 Zusammenhang in (D)-Ebenen zwischen der Menge aller Z-Streckungen und der Menge aller Punkte einer Geraden durch Z; 3.12 Konjugation von Streckungen mit Kollineationen; 3.13 Isomorphie aller Streckungsgruppen; 3.14 Konjugation von Parallelverschiebungen mit Streckungen; 3.15 Zusammenhang zwischen Streckungen und Dilatationen mit einem Fixpunkt 3.16 Die Streckungsgruppe mit Zentrum Z operiert in (D)-Ebenen auf jeder Geraden durch Z3.17 Z-Streckungsgleichheit; 3.18 Ein geometrischer Beweis von Satz 3.14; 3.19 (D) ist eine notwendige Voraussetzung fär Satz 3.11; 4 Schiefkörper der spurtreuen Endomorphismen von T; 4.1 Zwei Ergebnisse aus der Linearen Algebra; 4.1.1 Der Endomorphismenring einer abelschen Gruppe; 4.1.2 Abelsche Gruppen als Linksmoduln äber ihrem Endomorphismenring; 4.2 Anwendung auf die abelsche Gruppe (T, o) der Parallelverschiebungen; 4.3 Spurtreue Endomorphismen von (T, o) Zu jeder affinen Inzidenzebene, in welcher der große Satz von Desargues gilt (kurz: (D)-Ebene), wird mit Hilfe von Translationen und Streckungen ein zweidimensionaler Vektorraum über einem Schiefkörper hergeleitet. Anders als in der bisherigen Literatur werden diese Abbildungen nicht axiomatisch, sondern konstruktiv eingeführt. Dieser Weg ist anschaulich und verdeutlicht den geometrischen Hintergrund der algebraischen Strukturen. Außerdem sichert er von Anfang an die Existenz hinreichend vieler solcher Abbildungen Combinatorial geometry Combinatorics / Designs and configurations / Finite geometries Geometry / Finite geometry and special incidence structures / Affine and projective planes Number theory / Algebraic number theory: global fields / Algebraic numbers, algebraic rings of integers MATHEMATICS / Geometry / General bisacsh Datenverarbeitung Combinatorial geometry Number theory Data processing Geometry, Affine Konstruktive Mathematik (DE-588)4165105-4 gnd Affine Ebene (DE-588)4141564-4 gnd |
subject_GND | (DE-588)4165105-4 (DE-588)4141564-4 |
title | Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen |
title_auth | Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen |
title_exact_search | Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen |
title_full | Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen von Prof. em. Dr. Artur Bergmann, Prof. a. D. Dr. Erich Baumgartner |
title_fullStr | Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen von Prof. em. Dr. Artur Bergmann, Prof. a. D. Dr. Erich Baumgartner |
title_full_unstemmed | Affine Ebenen eine konstruktive Algebraisierung desarguesscher Ebenen von Prof. em. Dr. Artur Bergmann, Prof. a. D. Dr. Erich Baumgartner |
title_short | Affine Ebenen |
title_sort | affine ebenen eine konstruktive algebraisierung desarguesscher ebenen |
title_sub | eine konstruktive Algebraisierung desarguesscher Ebenen |
topic | Combinatorial geometry Combinatorics / Designs and configurations / Finite geometries Geometry / Finite geometry and special incidence structures / Affine and projective planes Number theory / Algebraic number theory: global fields / Algebraic numbers, algebraic rings of integers MATHEMATICS / Geometry / General bisacsh Datenverarbeitung Combinatorial geometry Number theory Data processing Geometry, Affine Konstruktive Mathematik (DE-588)4165105-4 gnd Affine Ebene (DE-588)4141564-4 gnd |
topic_facet | Combinatorial geometry Combinatorics / Designs and configurations / Finite geometries Geometry / Finite geometry and special incidence structures / Affine and projective planes Number theory / Algebraic number theory: global fields / Algebraic numbers, algebraic rings of integers MATHEMATICS / Geometry / General Datenverarbeitung Combinatorial geometry Number theory Data processing Geometry, Affine Konstruktive Mathematik Affine Ebene |
work_keys_str_mv | AT bergmannartur affineebeneneinekonstruktivealgebraisierungdesarguesscherebenen AT baumgartnererich affineebeneneinekonstruktivealgebraisierungdesarguesscherebenen |