Applications of epidemiological models to public health policymaking: the role of heterogeneity in model predictions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
[2014]
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xiii, 291 pages) illustrations |
ISBN: | 9789814522359 981452235X 9789814522342 9814522341 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043781057 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814522359 |9 978-981-4522-35-9 | ||
020 | |a 981452235X |9 981-4522-35-X | ||
020 | |a 9789814522342 |9 978-981-4522-34-2 | ||
020 | |a 9814522341 |9 981-4522-34-1 | ||
035 | |a (ZDB-4-EBA)ocn880147542 | ||
035 | |a (OCoLC)880147542 | ||
035 | |a (DE-599)BVBBV043781057 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 614.4 |2 23 | |
100 | 1 | |a Feng, Zhilan |d 1959- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applications of epidemiological models to public health policymaking |b the role of heterogeneity in model predictions |c by Zhilan Feng, Purdue University, USA. |
264 | 1 | |a New Jersey |b World Scientific |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (xiii, 291 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a 1. Epidemic models. 1.1. Continuous-time models. 1.2. Discrete-time models -- 2. Endemic models. 2.1. Classical SIR and SEIR endemic models. 2.2. Multi-group models and the role of mixing. 2.3. Multiple pathogen strains and host types. 2.4. Age-structured models. 2.5. Models with non-exponentially distributed stages durations. 2.6. Oscillatory dynamic created by isolation. 2.7. Coupled dynamics of biological processes -- 3. Applications of models to evaluations of disease control strategies. 3.1. Influenza. 3.2. SARS. 3.3. Tuberculosis. 3.4. Schistosomiasis. 3.5. Synergy between HSV-2 and HIV -- 4. Development of interactive tools to assist public health policymaking. 4.1. An interactive tool for policymaking in disease control | |
505 | 8 | |a Mathematical models can be very helpful to understand the transmission dynamics of infectious diseases. This book presents examples of epidemiological models and modeling tools that can assist policymakers to assess and evaluate disease control strategies | |
650 | 7 | |a MEDICAL / Forensic Medicine |2 bisacsh | |
650 | 7 | |a MEDICAL / Preventive Medicine |2 bisacsh | |
650 | 7 | |a MEDICAL / Public Health |2 bisacsh | |
650 | 7 | |a Communicable diseases / Epidemiology / Mathematical models |2 fast | |
650 | 7 | |a Epidemiology / Mathematical models |2 fast | |
650 | 7 | |a Health risk assessment / Government policy |2 fast | |
650 | 7 | |a Public health surveillance |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Medizin | |
650 | 4 | |a Politik | |
650 | 4 | |a Epidemiology |x Mathematical models |a Communicable diseases |x Epidemiology |x Mathematical models |a Health risk assessment |x Government policy |a Public health surveillance | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Feng, Zhilan, 1959- |t Applications of epidemiological models to public health policymaking |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029192117 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=779669 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=779669 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176611361161216 |
---|---|
any_adam_object | |
author | Feng, Zhilan 1959- |
author_facet | Feng, Zhilan 1959- |
author_role | aut |
author_sort | Feng, Zhilan 1959- |
author_variant | z f zf |
building | Verbundindex |
bvnumber | BV043781057 |
collection | ZDB-4-EBA |
contents | 1. Epidemic models. 1.1. Continuous-time models. 1.2. Discrete-time models -- 2. Endemic models. 2.1. Classical SIR and SEIR endemic models. 2.2. Multi-group models and the role of mixing. 2.3. Multiple pathogen strains and host types. 2.4. Age-structured models. 2.5. Models with non-exponentially distributed stages durations. 2.6. Oscillatory dynamic created by isolation. 2.7. Coupled dynamics of biological processes -- 3. Applications of models to evaluations of disease control strategies. 3.1. Influenza. 3.2. SARS. 3.3. Tuberculosis. 3.4. Schistosomiasis. 3.5. Synergy between HSV-2 and HIV -- 4. Development of interactive tools to assist public health policymaking. 4.1. An interactive tool for policymaking in disease control Mathematical models can be very helpful to understand the transmission dynamics of infectious diseases. This book presents examples of epidemiological models and modeling tools that can assist policymakers to assess and evaluate disease control strategies |
ctrlnum | (ZDB-4-EBA)ocn880147542 (OCoLC)880147542 (DE-599)BVBBV043781057 |
dewey-full | 614.4 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 614 - Forensic medicine; incidence of disease |
dewey-raw | 614.4 |
dewey-search | 614.4 |
dewey-sort | 3614.4 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03302nmm a2200541zc 4500</leader><controlfield tag="001">BV043781057</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814522359</subfield><subfield code="9">978-981-4522-35-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981452235X</subfield><subfield code="9">981-4522-35-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814522342</subfield><subfield code="9">978-981-4522-34-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814522341</subfield><subfield code="9">981-4522-34-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn880147542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)880147542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043781057</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">614.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Zhilan</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of epidemiological models to public health policymaking</subfield><subfield code="b">the role of heterogeneity in model predictions</subfield><subfield code="c">by Zhilan Feng, Purdue University, USA.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 291 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Epidemic models. 1.1. Continuous-time models. 1.2. Discrete-time models -- 2. Endemic models. 2.1. Classical SIR and SEIR endemic models. 2.2. Multi-group models and the role of mixing. 2.3. Multiple pathogen strains and host types. 2.4. Age-structured models. 2.5. Models with non-exponentially distributed stages durations. 2.6. Oscillatory dynamic created by isolation. 2.7. Coupled dynamics of biological processes -- 3. Applications of models to evaluations of disease control strategies. 3.1. Influenza. 3.2. SARS. 3.3. Tuberculosis. 3.4. Schistosomiasis. 3.5. Synergy between HSV-2 and HIV -- 4. Development of interactive tools to assist public health policymaking. 4.1. An interactive tool for policymaking in disease control</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Mathematical models can be very helpful to understand the transmission dynamics of infectious diseases. This book presents examples of epidemiological models and modeling tools that can assist policymakers to assess and evaluate disease control strategies</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Forensic Medicine</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Preventive Medicine</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Public Health</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Communicable diseases / Epidemiology / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Epidemiology / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Health risk assessment / Government policy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Public health surveillance</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medizin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Politik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="x">Mathematical models</subfield><subfield code="a">Communicable diseases</subfield><subfield code="x">Epidemiology</subfield><subfield code="x">Mathematical models</subfield><subfield code="a">Health risk assessment</subfield><subfield code="x">Government policy</subfield><subfield code="a">Public health surveillance</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Feng, Zhilan, 1959-</subfield><subfield code="t">Applications of epidemiological models to public health policymaking</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029192117</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=779669</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=779669</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043781057 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:34:56Z |
institution | BVB |
isbn | 9789814522359 981452235X 9789814522342 9814522341 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029192117 |
oclc_num | 880147542 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xiii, 291 pages) illustrations |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific |
record_format | marc |
spelling | Feng, Zhilan 1959- Verfasser aut Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions by Zhilan Feng, Purdue University, USA. New Jersey World Scientific [2014] © 2014 1 online resource (xiii, 291 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Print version record 1. Epidemic models. 1.1. Continuous-time models. 1.2. Discrete-time models -- 2. Endemic models. 2.1. Classical SIR and SEIR endemic models. 2.2. Multi-group models and the role of mixing. 2.3. Multiple pathogen strains and host types. 2.4. Age-structured models. 2.5. Models with non-exponentially distributed stages durations. 2.6. Oscillatory dynamic created by isolation. 2.7. Coupled dynamics of biological processes -- 3. Applications of models to evaluations of disease control strategies. 3.1. Influenza. 3.2. SARS. 3.3. Tuberculosis. 3.4. Schistosomiasis. 3.5. Synergy between HSV-2 and HIV -- 4. Development of interactive tools to assist public health policymaking. 4.1. An interactive tool for policymaking in disease control Mathematical models can be very helpful to understand the transmission dynamics of infectious diseases. This book presents examples of epidemiological models and modeling tools that can assist policymakers to assess and evaluate disease control strategies MEDICAL / Forensic Medicine bisacsh MEDICAL / Preventive Medicine bisacsh MEDICAL / Public Health bisacsh Communicable diseases / Epidemiology / Mathematical models fast Epidemiology / Mathematical models fast Health risk assessment / Government policy fast Public health surveillance fast Mathematisches Modell Medizin Politik Epidemiology Mathematical models Communicable diseases Epidemiology Mathematical models Health risk assessment Government policy Public health surveillance Erscheint auch als Druck-Ausgabe Feng, Zhilan, 1959- Applications of epidemiological models to public health policymaking |
spellingShingle | Feng, Zhilan 1959- Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions 1. Epidemic models. 1.1. Continuous-time models. 1.2. Discrete-time models -- 2. Endemic models. 2.1. Classical SIR and SEIR endemic models. 2.2. Multi-group models and the role of mixing. 2.3. Multiple pathogen strains and host types. 2.4. Age-structured models. 2.5. Models with non-exponentially distributed stages durations. 2.6. Oscillatory dynamic created by isolation. 2.7. Coupled dynamics of biological processes -- 3. Applications of models to evaluations of disease control strategies. 3.1. Influenza. 3.2. SARS. 3.3. Tuberculosis. 3.4. Schistosomiasis. 3.5. Synergy between HSV-2 and HIV -- 4. Development of interactive tools to assist public health policymaking. 4.1. An interactive tool for policymaking in disease control Mathematical models can be very helpful to understand the transmission dynamics of infectious diseases. This book presents examples of epidemiological models and modeling tools that can assist policymakers to assess and evaluate disease control strategies MEDICAL / Forensic Medicine bisacsh MEDICAL / Preventive Medicine bisacsh MEDICAL / Public Health bisacsh Communicable diseases / Epidemiology / Mathematical models fast Epidemiology / Mathematical models fast Health risk assessment / Government policy fast Public health surveillance fast Mathematisches Modell Medizin Politik Epidemiology Mathematical models Communicable diseases Epidemiology Mathematical models Health risk assessment Government policy Public health surveillance |
title | Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions |
title_auth | Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions |
title_exact_search | Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions |
title_full | Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions by Zhilan Feng, Purdue University, USA. |
title_fullStr | Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions by Zhilan Feng, Purdue University, USA. |
title_full_unstemmed | Applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions by Zhilan Feng, Purdue University, USA. |
title_short | Applications of epidemiological models to public health policymaking |
title_sort | applications of epidemiological models to public health policymaking the role of heterogeneity in model predictions |
title_sub | the role of heterogeneity in model predictions |
topic | MEDICAL / Forensic Medicine bisacsh MEDICAL / Preventive Medicine bisacsh MEDICAL / Public Health bisacsh Communicable diseases / Epidemiology / Mathematical models fast Epidemiology / Mathematical models fast Health risk assessment / Government policy fast Public health surveillance fast Mathematisches Modell Medizin Politik Epidemiology Mathematical models Communicable diseases Epidemiology Mathematical models Health risk assessment Government policy Public health surveillance |
topic_facet | MEDICAL / Forensic Medicine MEDICAL / Preventive Medicine MEDICAL / Public Health Communicable diseases / Epidemiology / Mathematical models Epidemiology / Mathematical models Health risk assessment / Government policy Public health surveillance Mathematisches Modell Medizin Politik Epidemiology Mathematical models Communicable diseases Epidemiology Mathematical models Health risk assessment Government policy Public health surveillance |
work_keys_str_mv | AT fengzhilan applicationsofepidemiologicalmodelstopublichealthpolicymakingtheroleofheterogeneityinmodelpredictions |