Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York
W. de Gruyter
1999
|
Schriftenreihe: | De Gruyter series in logic and its applications
1 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (vi, 934 pages) |
ISBN: | 9783110804737 3110804735 311015708X 9783110157086 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043779398 | ||
003 | DE-604 | ||
005 | 20190125 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783110804737 |9 978-3-11-080473-7 | ||
020 | |a 3110804735 |9 3-11-080473-5 | ||
020 | |a 311015708X |9 3-11-015708-X | ||
020 | |a 9783110157086 |9 978-3-11-015708-6 | ||
035 | |a (ZDB-4-EBA)ocn857769673 | ||
035 | |a (OCoLC)857769673 | ||
035 | |a (DE-599)BVBBV043779398 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.3 |2 22 | |
100 | 1 | |a Woodin, W. Hugh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
264 | 1 | |a Berlin ; New York |b W. de Gruyter |c 1999 | |
300 | |a 1 online resource (vi, 934 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in logic and its applications |v 1 | |
500 | |a Print version record | ||
505 | 8 | |a ""1 Introduction ""; ""1.1 The Nonstationary Ideal On Ï?1 ""; ""1.2 The Partial Order â??max ""; ""1.3 â??max Variations ""; ""1.4 Extensions Of Inner Models Beyond L (â??) ""; ""1.5 Concluding Remarks ""; ""2 Preliminaries ""; ""2.1 Weakly Homogeneous Trees And Scales ""; ""2.2 Generic Absoluteness ""; ""2.3 The Stationary Tower ""; ""2.4 Forcing Axioms ""; ""2.5 Reflection Principles ""; ""2.6 Generic Ideals ""; ""3 The Nonstationary Ideal ""; ""3.1 The Nonstationary Ideal And Î?Ì°12 ""; ""3.2 The Nonstationary Ideal And Ch ""; ""4 The â??max-Extension ""; ""4.1 Iterable Structures "" | |
505 | 8 | |a ""4.2 The Partial Order â??max """"5 Applications ""; ""5.1 The Sentence Ï?ac ""; ""5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) ""; ""5.3 The Sentence Ï?ac ""; ""5.4 The Stationary Tower And â??max ""; ""5.5 â??*Max ""; ""5.6 â??0Max ""; ""5.7 The Axiom (**) ""; ""5.8 Homogeneity Properties Of P(Ï?1)/Lns ""; ""6 â??max Variations ""; ""6.1 2â??max ""; ""6.2 Variations For Obtaining Ï?1-Dense Ideals ""; ""6.3 Nonregular Ultrafilters On Ï?1 ""; ""7 Conditional Variations ""; ""7.1 Suslin Trees ""; ""7.2 The Borel Conjecture ""; ""8 â?£ Principles For Ï?1 ""; ""8.1 Condensation Principles "" | |
505 | 8 | |a ""8.2 â??â?£Nsmax """"8.3 The Principles, â?£+Ns And â?£++Ns ""; ""9 Extensions Of L(Î?, â??) ""; ""9.1 Ad+ ""; ""9.2 The â??max-Extension Of L(Î?, â??) ""; ""9.3 The â?šmax-Extension Of L(Î?, â??) ""; ""9.4 Changâ€?S Conjecture ""; ""9.5 Weak And Strong Reflection Principles ""; ""9.6 Strong Changâ€?S Conjecture ""; ""9.7 Ideals On Ï?2 ""; ""10 Further Results ""; ""10.1 Forcing Notions And Large Cardinals ""; ""10.2 Coding Into L(P(Ï?1)) ""; ""10.3 Bounded Forms Of Martinâ€?S Maximum ""; ""10.4 Ω-Logic ""; ""10.5 Ω-Logic And The Continuum Hypothesis ""; ""10.6 The Axiom (*)+ "" | |
505 | 8 | |a ""10.7 The Effective Singular Cardinals Hypothesis """"11 Questions ""; ""Bibliography ""; ""Index "" | |
650 | 4 | |a Forcing (Théorie des modèles) | |
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 7 | |a Forcing (Model theory) |2 fast | |
650 | 7 | |a Lógica matemática |2 larpcal | |
650 | 7 | |a Teoria dos conjuntos |2 larpcal | |
650 | 4 | |a Forcing (Model theory) | |
650 | 4 | |a Model theory | |
650 | 4 | |a Forcing (Model theory) | |
650 | 0 | 7 | |a Forcing |0 (DE-588)4154978-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontinuumshypothese |0 (DE-588)4481570-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Forcing |0 (DE-588)4154978-8 |D s |
689 | 0 | 1 | |a Kontinuumshypothese |0 (DE-588)4481570-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Woodin, W |t H. (W. Hugh). Axiom of determinacy, forcing axioms, and the nonstationary ideal |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029190458 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176608091701248 |
---|---|
any_adam_object | |
author | Woodin, W. Hugh |
author_facet | Woodin, W. Hugh |
author_role | aut |
author_sort | Woodin, W. Hugh |
author_variant | w h w wh whw |
building | Verbundindex |
bvnumber | BV043779398 |
collection | ZDB-4-EBA |
contents | ""1 Introduction ""; ""1.1 The Nonstationary Ideal On Ï?1 ""; ""1.2 The Partial Order â??max ""; ""1.3 â??max Variations ""; ""1.4 Extensions Of Inner Models Beyond L (â??) ""; ""1.5 Concluding Remarks ""; ""2 Preliminaries ""; ""2.1 Weakly Homogeneous Trees And Scales ""; ""2.2 Generic Absoluteness ""; ""2.3 The Stationary Tower ""; ""2.4 Forcing Axioms ""; ""2.5 Reflection Principles ""; ""2.6 Generic Ideals ""; ""3 The Nonstationary Ideal ""; ""3.1 The Nonstationary Ideal And Î?Ì°12 ""; ""3.2 The Nonstationary Ideal And Ch ""; ""4 The â??max-Extension ""; ""4.1 Iterable Structures "" ""4.2 The Partial Order â??max """"5 Applications ""; ""5.1 The Sentence Ï?ac ""; ""5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) ""; ""5.3 The Sentence Ï?ac ""; ""5.4 The Stationary Tower And â??max ""; ""5.5 â??*Max ""; ""5.6 â??0Max ""; ""5.7 The Axiom (**) ""; ""5.8 Homogeneity Properties Of P(Ï?1)/Lns ""; ""6 â??max Variations ""; ""6.1 2â??max ""; ""6.2 Variations For Obtaining Ï?1-Dense Ideals ""; ""6.3 Nonregular Ultrafilters On Ï?1 ""; ""7 Conditional Variations ""; ""7.1 Suslin Trees ""; ""7.2 The Borel Conjecture ""; ""8 â?£ Principles For Ï?1 ""; ""8.1 Condensation Principles "" ""8.2 â??â?£Nsmax """"8.3 The Principles, â?£+Ns And â?£++Ns ""; ""9 Extensions Of L(Î?, â??) ""; ""9.1 Ad+ ""; ""9.2 The â??max-Extension Of L(Î?, â??) ""; ""9.3 The â?šmax-Extension Of L(Î?, â??) ""; ""9.4 Changâ€?S Conjecture ""; ""9.5 Weak And Strong Reflection Principles ""; ""9.6 Strong Changâ€?S Conjecture ""; ""9.7 Ideals On Ï?2 ""; ""10 Further Results ""; ""10.1 Forcing Notions And Large Cardinals ""; ""10.2 Coding Into L(P(Ï?1)) ""; ""10.3 Bounded Forms Of Martinâ€?S Maximum ""; ""10.4 Ω-Logic ""; ""10.5 Ω-Logic And The Continuum Hypothesis ""; ""10.6 The Axiom (*)+ "" ""10.7 The Effective Singular Cardinals Hypothesis """"11 Questions ""; ""Bibliography ""; ""Index "" |
ctrlnum | (ZDB-4-EBA)ocn857769673 (OCoLC)857769673 (DE-599)BVBBV043779398 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04224nmm a2200601zcb4500</leader><controlfield tag="001">BV043779398</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190125 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110804737</subfield><subfield code="9">978-3-11-080473-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110804735</subfield><subfield code="9">3-11-080473-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">311015708X</subfield><subfield code="9">3-11-015708-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110157086</subfield><subfield code="9">978-3-11-015708-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn857769673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)857769673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043779398</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Woodin, W. Hugh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; New York</subfield><subfield code="b">W. de Gruyter</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 934 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in logic and its applications</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""1 Introduction ""; ""1.1 The Nonstationary Ideal On Ï?1 ""; ""1.2 The Partial Order â??max ""; ""1.3 â??max Variations ""; ""1.4 Extensions Of Inner Models Beyond L (â??) ""; ""1.5 Concluding Remarks ""; ""2 Preliminaries ""; ""2.1 Weakly Homogeneous Trees And Scales ""; ""2.2 Generic Absoluteness ""; ""2.3 The Stationary Tower ""; ""2.4 Forcing Axioms ""; ""2.5 Reflection Principles ""; ""2.6 Generic Ideals ""; ""3 The Nonstationary Ideal ""; ""3.1 The Nonstationary Ideal And Î?Ì°12 ""; ""3.2 The Nonstationary Ideal And Ch ""; ""4 The â??max-Extension ""; ""4.1 Iterable Structures ""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""4.2 The Partial Order â??max """"5 Applications ""; ""5.1 The Sentence Ï?ac ""; ""5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) ""; ""5.3 The Sentence Ï?ac ""; ""5.4 The Stationary Tower And â??max ""; ""5.5 â??*Max ""; ""5.6 â??0Max ""; ""5.7 The Axiom (**) ""; ""5.8 Homogeneity Properties Of P(Ï?1)/Lns ""; ""6 â??max Variations ""; ""6.1 2â??max ""; ""6.2 Variations For Obtaining Ï?1-Dense Ideals ""; ""6.3 Nonregular Ultrafilters On Ï?1 ""; ""7 Conditional Variations ""; ""7.1 Suslin Trees ""; ""7.2 The Borel Conjecture ""; ""8 â?£ Principles For Ï?1 ""; ""8.1 Condensation Principles ""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""8.2 â??â?£Nsmax """"8.3 The Principles, â?£+Ns And â?£++Ns ""; ""9 Extensions Of L(Î?, â??) ""; ""9.1 Ad+ ""; ""9.2 The â??max-Extension Of L(Î?, â??) ""; ""9.3 The â?šmax-Extension Of L(Î?, â??) ""; ""9.4 Changâ€?S Conjecture ""; ""9.5 Weak And Strong Reflection Principles ""; ""9.6 Strong Changâ€?S Conjecture ""; ""9.7 Ideals On Ï?2 ""; ""10 Further Results ""; ""10.1 Forcing Notions And Large Cardinals ""; ""10.2 Coding Into L(P(Ï?1)) ""; ""10.3 Bounded Forms Of Martinâ€?S Maximum ""; ""10.4 Ω-Logic ""; ""10.5 Ω-Logic And The Continuum Hypothesis ""; ""10.6 The Axiom (*)+ ""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""10.7 The Effective Singular Cardinals Hypothesis """"11 Questions ""; ""Bibliography ""; ""Index ""</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forcing (Théorie des modèles)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forcing (Model theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lógica matemática</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria dos conjuntos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forcing (Model theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forcing (Model theory)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Forcing</subfield><subfield code="0">(DE-588)4154978-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumshypothese</subfield><subfield code="0">(DE-588)4481570-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Forcing</subfield><subfield code="0">(DE-588)4154978-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kontinuumshypothese</subfield><subfield code="0">(DE-588)4481570-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Woodin, W</subfield><subfield code="t">H. (W. Hugh). Axiom of determinacy, forcing axioms, and the nonstationary ideal</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029190458</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043779398 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:53Z |
institution | BVB |
isbn | 9783110804737 3110804735 311015708X 9783110157086 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029190458 |
oclc_num | 857769673 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (vi, 934 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | W. de Gruyter |
record_format | marc |
series2 | De Gruyter series in logic and its applications |
spelling | Woodin, W. Hugh Verfasser aut Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal Berlin ; New York W. de Gruyter 1999 1 online resource (vi, 934 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter series in logic and its applications 1 Print version record ""1 Introduction ""; ""1.1 The Nonstationary Ideal On Ï?1 ""; ""1.2 The Partial Order â??max ""; ""1.3 â??max Variations ""; ""1.4 Extensions Of Inner Models Beyond L (â??) ""; ""1.5 Concluding Remarks ""; ""2 Preliminaries ""; ""2.1 Weakly Homogeneous Trees And Scales ""; ""2.2 Generic Absoluteness ""; ""2.3 The Stationary Tower ""; ""2.4 Forcing Axioms ""; ""2.5 Reflection Principles ""; ""2.6 Generic Ideals ""; ""3 The Nonstationary Ideal ""; ""3.1 The Nonstationary Ideal And Î?Ì°12 ""; ""3.2 The Nonstationary Ideal And Ch ""; ""4 The â??max-Extension ""; ""4.1 Iterable Structures "" ""4.2 The Partial Order â??max """"5 Applications ""; ""5.1 The Sentence Ï?ac ""; ""5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) ""; ""5.3 The Sentence Ï?ac ""; ""5.4 The Stationary Tower And â??max ""; ""5.5 â??*Max ""; ""5.6 â??0Max ""; ""5.7 The Axiom (**) ""; ""5.8 Homogeneity Properties Of P(Ï?1)/Lns ""; ""6 â??max Variations ""; ""6.1 2â??max ""; ""6.2 Variations For Obtaining Ï?1-Dense Ideals ""; ""6.3 Nonregular Ultrafilters On Ï?1 ""; ""7 Conditional Variations ""; ""7.1 Suslin Trees ""; ""7.2 The Borel Conjecture ""; ""8 â?£ Principles For Ï?1 ""; ""8.1 Condensation Principles "" ""8.2 â??â?£Nsmax """"8.3 The Principles, â?£+Ns And â?£++Ns ""; ""9 Extensions Of L(Î?, â??) ""; ""9.1 Ad+ ""; ""9.2 The â??max-Extension Of L(Î?, â??) ""; ""9.3 The â?šmax-Extension Of L(Î?, â??) ""; ""9.4 Changâ€?S Conjecture ""; ""9.5 Weak And Strong Reflection Principles ""; ""9.6 Strong Changâ€?S Conjecture ""; ""9.7 Ideals On Ï?2 ""; ""10 Further Results ""; ""10.1 Forcing Notions And Large Cardinals ""; ""10.2 Coding Into L(P(Ï?1)) ""; ""10.3 Bounded Forms Of Martinâ€?S Maximum ""; ""10.4 Ω-Logic ""; ""10.5 Ω-Logic And The Continuum Hypothesis ""; ""10.6 The Axiom (*)+ "" ""10.7 The Effective Singular Cardinals Hypothesis """"11 Questions ""; ""Bibliography ""; ""Index "" Forcing (Théorie des modèles) MATHEMATICS / General bisacsh Forcing (Model theory) fast Lógica matemática larpcal Teoria dos conjuntos larpcal Forcing (Model theory) Model theory Forcing (DE-588)4154978-8 gnd rswk-swf Kontinuumshypothese (DE-588)4481570-0 gnd rswk-swf Forcing (DE-588)4154978-8 s Kontinuumshypothese (DE-588)4481570-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Woodin, W H. (W. Hugh). Axiom of determinacy, forcing axioms, and the nonstationary ideal 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Woodin, W. Hugh Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal ""1 Introduction ""; ""1.1 The Nonstationary Ideal On Ï?1 ""; ""1.2 The Partial Order â??max ""; ""1.3 â??max Variations ""; ""1.4 Extensions Of Inner Models Beyond L (â??) ""; ""1.5 Concluding Remarks ""; ""2 Preliminaries ""; ""2.1 Weakly Homogeneous Trees And Scales ""; ""2.2 Generic Absoluteness ""; ""2.3 The Stationary Tower ""; ""2.4 Forcing Axioms ""; ""2.5 Reflection Principles ""; ""2.6 Generic Ideals ""; ""3 The Nonstationary Ideal ""; ""3.1 The Nonstationary Ideal And Î?Ì°12 ""; ""3.2 The Nonstationary Ideal And Ch ""; ""4 The â??max-Extension ""; ""4.1 Iterable Structures "" ""4.2 The Partial Order â??max """"5 Applications ""; ""5.1 The Sentence Ï?ac ""; ""5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) ""; ""5.3 The Sentence Ï?ac ""; ""5.4 The Stationary Tower And â??max ""; ""5.5 â??*Max ""; ""5.6 â??0Max ""; ""5.7 The Axiom (**) ""; ""5.8 Homogeneity Properties Of P(Ï?1)/Lns ""; ""6 â??max Variations ""; ""6.1 2â??max ""; ""6.2 Variations For Obtaining Ï?1-Dense Ideals ""; ""6.3 Nonregular Ultrafilters On Ï?1 ""; ""7 Conditional Variations ""; ""7.1 Suslin Trees ""; ""7.2 The Borel Conjecture ""; ""8 â?£ Principles For Ï?1 ""; ""8.1 Condensation Principles "" ""8.2 â??â?£Nsmax """"8.3 The Principles, â?£+Ns And â?£++Ns ""; ""9 Extensions Of L(Î?, â??) ""; ""9.1 Ad+ ""; ""9.2 The â??max-Extension Of L(Î?, â??) ""; ""9.3 The â?šmax-Extension Of L(Î?, â??) ""; ""9.4 Changâ€?S Conjecture ""; ""9.5 Weak And Strong Reflection Principles ""; ""9.6 Strong Changâ€?S Conjecture ""; ""9.7 Ideals On Ï?2 ""; ""10 Further Results ""; ""10.1 Forcing Notions And Large Cardinals ""; ""10.2 Coding Into L(P(Ï?1)) ""; ""10.3 Bounded Forms Of Martinâ€?S Maximum ""; ""10.4 Ω-Logic ""; ""10.5 Ω-Logic And The Continuum Hypothesis ""; ""10.6 The Axiom (*)+ "" ""10.7 The Effective Singular Cardinals Hypothesis """"11 Questions ""; ""Bibliography ""; ""Index "" Forcing (Théorie des modèles) MATHEMATICS / General bisacsh Forcing (Model theory) fast Lógica matemática larpcal Teoria dos conjuntos larpcal Forcing (Model theory) Model theory Forcing (DE-588)4154978-8 gnd Kontinuumshypothese (DE-588)4481570-0 gnd |
subject_GND | (DE-588)4154978-8 (DE-588)4481570-0 |
title | Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
title_auth | Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
title_exact_search | Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
title_full | Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
title_fullStr | Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
title_full_unstemmed | Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
title_short | Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal |
title_sort | axiom of determinacy forcing axioms and the nonstationary ideal |
topic | Forcing (Théorie des modèles) MATHEMATICS / General bisacsh Forcing (Model theory) fast Lógica matemática larpcal Teoria dos conjuntos larpcal Forcing (Model theory) Model theory Forcing (DE-588)4154978-8 gnd Kontinuumshypothese (DE-588)4481570-0 gnd |
topic_facet | Forcing (Théorie des modèles) MATHEMATICS / General Forcing (Model theory) Lógica matemática Teoria dos conjuntos Model theory Forcing Kontinuumshypothese |
work_keys_str_mv | AT woodinwhugh axiomofdeterminacyforcingaxiomsandthenonstationaryideal |